AD620

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 31b. Gain Nonlinearity, G = 100, RL = 10 kΩ

(100 μV = 10 ppm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 31c. Gain Nonlinearity, G = 1000, RL = 10 kΩ

(1 mV = 100 ppm)

 

 

 

 

 

 

10kV*

1kV

10kV

INPUT

 

 

10T

 

 

 

 

 

10V p-p

 

 

 

 

 

100kV

 

 

 

 

VOUT

 

 

 

 

 

 

 

 

 

+VS

 

11kV

1kV

100V

2

 

 

 

 

 

 

 

 

1

7

 

 

G=1000

G=1

 

 

 

 

G=100

G=10

AD620

6

 

 

 

 

 

 

49.9V 499V

5.49kV

 

5

 

 

 

8

 

 

 

 

4

 

 

 

 

3

 

 

 

 

 

 

I1

20mA

VB

20mA

I2

 

 

 

A1

 

A2

 

10kV

 

 

 

 

 

 

 

 

C1

 

C2

 

 

 

 

 

 

 

10kV

 

 

 

 

 

 

 

A3

OUTPUT

R3

R1

R2

10kV

10kV

REF

 

 

400V

 

 

 

 

 

 

 

 

– IN

Q1

 

 

Q2

+IN

 

 

 

RG

 

R4

 

 

 

 

 

400V

 

 

 

GAIN

 

GAIN

 

 

 

 

SENSE

 

SENSE

 

 

 

 

 

–V

 

 

 

 

 

S

 

 

 

Figure 33. Simplified Schematic of AD620

THEORY OF OPERATION

The AD620 is a monolithic instrumentation amplifier based on a modification of the classic three op amp approach. Absolute value trimming allows the user to program gain accurately (to 0.15% at G = 100) with only one resistor. Monolithic construc- tion and laser wafer trimming allow the tight matching and tracking of circuit components, thus ensuring the high level of performance inherent in this circuit.

The input transistors Q1 and Q2 provide a single differential- pair bipolar input for high precision (Figure 33), yet offer 10× lower Input Bias Current thanks to Superβeta processing. Feed- back through the Q1-A1-R1 loop and the Q2-A2-R2 loop main- tains constant collector current of the input devices Q1, Q2 thereby impressing the input voltage across the external gain setting resistor RG. This creates a differential gain from the inputs to the A1/A2 outputs given by G = (R1 + R2)/RG + 1. The unity-gain subtracter A3 removes any common-mode sig- nal, yielding a single-ended output referred to the REF pin potential.

The value of RG also determines the transconductance of the preamp stage. As RG is reduced for larger gains, the transcon- ductance increases asymptotically to that of the input transistors. This has three important advantages: (a) Open-loop gain is boosted for increasing programmed gain, thus reducing gain- related errors. (b) The gain-bandwidth product (determined by C1, C2 and the preamp transconductance) increases with pro- grammed gain, thus optimizing frequency response. (c) The input voltage noise is reduced to a value of 9 nV/√Hz, deter- mined mainly by the collector current and base resistance of the input devices.

The internal gain resistors, R1 and R2, are trimmed to an abso- lute value of 24.7 kΩ, allowing the gain to be programmed accurately with a single external resistor.

The gain equation is then

–V

S

*ALL RESISTORS 1% TOLERANCE

Figure 32. Settling Time Test Circuit

= 8>28 Ω +

so that

5

=8>28 Ω

5

–10–

REV. E

Page 10
Image 10
Analog Devices C1599c07 specifications AD620, Theory of Operation