BLADEOS 6.5.2 Application Guide

Forming BGP Peer Routers

Two BGP routers become peers or neighbors once you establish a TCP connection between them. For each new route, if a peer is interested in that route (for example, if a peer would like to receive your static routes and the new route is static), an update message is sent to that peer containing the new route. For each route removed from the route table, if the route has already been sent to a peer, an update message containing the route to withdraw is sent to that peer.

For each Internet host, you must be able to send a packet to that host, and that host has to have a path back to you. This means that whoever provides Internet connectivity to that host must have a path to you. Ultimately, this means that they must “hear a route” which covers the section of the IPv4 space you are using; otherwise, you will not have connectivity to the host in question.

What is a Route Map?

A route map is used to control and modify routing information. Route maps define conditions for redistributing routes from one routing protocol to another or controlling routing information when injecting it in and out of BGP. Route maps are used by OSPF only for redistributing routes. For example, a route map is used to set a preference value for a specific route from a peer router and another preference value for all other routes learned via the same peer router. For example, the following command is used to enter the Route Map mode for defining a route map:

RS

G8124(config)# route-map

<map number>

(Select a route map)

RS

G8124(config-route-map)#

?

(List available commands)

 

 

 

 

A route map allows you to match attributes, such as metric, network address, and AS number. It also allows users to overwrite the local preference metric and to append the AS number in the AS route. See “BGP Failover Configuration” on page 268.

BLADEOS allows you to configure 32 route maps. Each route map can have up to eight access lists. Each access list consists of a network filter. A network filter defines an IPv4 address and subnet mask of the network that you want to include in the filter. Figure 27 illustrates the relationship between route maps, access lists and network filters.

BMD00220, October 2010

Chapter 19: Border Gateway Protocol ￿ 261

Page 261
Image 261
Blade ICE G8124-E manual Forming BGP Peer Routers, What is a Route Map?

G8124-E, G8124 specifications

The Blade ICE G8124 is a cutting-edge networking solution designed for high-performance data center environments. It has emerged as a popular choice among organizations that require reliable and efficient network infrastructure to support their growing demands for bandwidth and low-latency connectivity.

One of the key features of the Blade ICE G8124 is its high port density. This networking device typically offers 24 ports of 10 Gigabit Ethernet, ensuring that businesses can connect numerous devices without requiring extensive physical space. The design is also scalable, accommodating future expansion as organizational needs grow.

Another significant aspect of the G8124 is its advanced switching capabilities. It utilizes a non-blocking architecture, enabling simultaneous data transmissions on all ports. This characteristic ensures that there is no bottleneck in the network traffic, providing the high performance needed in data-intensive applications.

The G8124 incorporates various technologies to enhance its functionalities. It supports Layer 2 and Layer 3 switching, making it versatile for different networking needs. Additionally, it features comprehensive Quality of Service (QoS) settings that prioritize critical applications, such as VoIP and video streaming, ensuring smooth operation even under heavy loads.

In terms of security, the Blade ICE G8124 provides robust measures to protect the network. It supports features such as Access Control Lists (ACLs), port security, and VLANs, allowing administrators to segment the network and restrict unauthorized access. These security capabilities are vital in today’s landscape, where cyber threats are increasingly common.

Moreover, the G8124 offers excellent management features. It includes an intuitive user interface for easy configuration and monitoring of network performance. SNMP support allows integration with network management systems, providing administrators with insights needed to optimize their operations.

Power efficiency is also a hallmark of the Blade ICE G8124. It employs energy-saving technologies that reduce operational costs, an essential factor for environmentally-conscious organizations striving to minimize their carbon footprint.

In summary, the Blade ICE G8124 stands out with its high port density, advanced switching capabilities, robust security features, and efficient management options. This networking solution is designed to meet the demands of modern data centers, providing the performance, reliability, and scalability that organizations require. With its innovative technologies, the G8124 ensures that businesses can navigate the complexities of today's networking landscape effectively.