BLADEOS 6.5.2 Application Guide

Switch-Centric Configuration

STP/PVST+ is switch-centric: STGs are enforced only on the switch where they are configured. The STG ID is not transmitted in the Spanning Tree BPDU. Each Spanning Tree decision is based entirely on the configuration of the particular switch.

For example, in Figure 12, though VLAN 2 is shared by the Switch A and Switch B, each switch is responsible for the proper configuration of its own ports, VLANs, and STGs. Switch A identifies its own port 17 as part of VLAN 2 on STG 2, and the Switch B identifies its own port 8 as part of VLAN 2 on STG 2.

Figure 12 Implementing Multiple Spanning Tree Groups

Chassis

Application

Switch A

 

Switch B

17

STG 2

 

8

 

 

VLAN 2

 

18

2

1

STG 2

VLAN 3

STG 1

VLAN 1

8

2

1

1

8

Application

Application

Switch C

Switch D

The VLAN participation for each Spanning Tree Group in Figure 12 on page 121 is as follows:

￿VLAN 1 Participation

Assuming Switch B to be the root bridge, Switch B transmits the BPDU for VLAN 1 on ports 1 and 2. Switch C receives the BPDU on port 2, and Switch D receives the BPDU on port 1. Because there is a network loop between the switches in VLAN 1, either Switch D will block port 8 or Switch C will block port 1, depending on the information provided in the BPDU.

￿VLAN 2 Participation

Switch B, the root bridge, generates a BPDU for STG 2 from port 8. Switch A receives this BPDU on port 17, which is assigned to VLAN 2, STG 2. Because switch B has no additional ports participating in STG 2, this BPDU is not forwarded to any additional ports and Switch B remains the designated root.

￿VLAN 3 Participation

For VLAN 3, Switch A or Switch C may be the root bridge. If Switch A is the root bridge for VLAN 3, STG 2, then Switch A transmits the BPDU from port 18. Switch C receives this BPDU on port 8 and is identified as participating in VLAN 3, STG 2. Since Switch C has no additional ports participating in STG 2, this BPDU is not forwarded to any additional ports and Switch A remains the designated root.

BMD00220, October 2010

Chapter 8: Spanning Tree Protocols ￿ 121

Page 121
Image 121
Blade ICE G8124-E manual Switch-Centric Configuration

G8124-E, G8124 specifications

The Blade ICE G8124 is a cutting-edge networking solution designed for high-performance data center environments. It has emerged as a popular choice among organizations that require reliable and efficient network infrastructure to support their growing demands for bandwidth and low-latency connectivity.

One of the key features of the Blade ICE G8124 is its high port density. This networking device typically offers 24 ports of 10 Gigabit Ethernet, ensuring that businesses can connect numerous devices without requiring extensive physical space. The design is also scalable, accommodating future expansion as organizational needs grow.

Another significant aspect of the G8124 is its advanced switching capabilities. It utilizes a non-blocking architecture, enabling simultaneous data transmissions on all ports. This characteristic ensures that there is no bottleneck in the network traffic, providing the high performance needed in data-intensive applications.

The G8124 incorporates various technologies to enhance its functionalities. It supports Layer 2 and Layer 3 switching, making it versatile for different networking needs. Additionally, it features comprehensive Quality of Service (QoS) settings that prioritize critical applications, such as VoIP and video streaming, ensuring smooth operation even under heavy loads.

In terms of security, the Blade ICE G8124 provides robust measures to protect the network. It supports features such as Access Control Lists (ACLs), port security, and VLANs, allowing administrators to segment the network and restrict unauthorized access. These security capabilities are vital in today’s landscape, where cyber threats are increasingly common.

Moreover, the G8124 offers excellent management features. It includes an intuitive user interface for easy configuration and monitoring of network performance. SNMP support allows integration with network management systems, providing administrators with insights needed to optimize their operations.

Power efficiency is also a hallmark of the Blade ICE G8124. It employs energy-saving technologies that reduce operational costs, an essential factor for environmentally-conscious organizations striving to minimize their carbon footprint.

In summary, the Blade ICE G8124 stands out with its high port density, advanced switching capabilities, robust security features, and efficient management options. This networking solution is designed to meet the demands of modern data centers, providing the performance, reliability, and scalability that organizations require. With its innovative technologies, the G8124 ensures that businesses can navigate the complexities of today's networking landscape effectively.