BLADEOS 6.5.2 Application Guide

ACL Port Mirroring

For regular ACLs and VMaps, packets that match an ACL on a specific port can be mirrored to another switch port for network diagnosis and monitoring.

The source port for the mirrored packets cannot be a portchannel, but may be a member of a portchannel.

The destination port to which packets are mirrored must be a physical port.

If the ACL or VMap has an action (permit, drop, etc.) assigned, it cannot be used to mirror packets for that ACL.

Use the following commands to add mirroring to an ACL:

￿For regular ACLs:

RS G8124(config)# access-control list <ACL number> mirror port

<destination port>

The ACL must be also assigned to it target ports as usual (see “Assigning Individual ACLs to a Port” on page 78).

￿For VMaps (see “VLAN Maps” on page 82):

RS G8124(config)# access-control vmap <VMap number> mirror port

<monitor destination port>

Viewing ACL Statistics

ACL statistics display how many packets have “hit” (matched) each ACL. Use ACL statistics to check filter performance or to debug the ACL filter configuration.

You must enable statistics for each ACL that you wish to monitor:

RS G8124(config)# access-control list <ACL number> statistics

80 ￿ Chapter 5: Access Control Lists

BMD00220, October 2010

Page 80
Image 80
Blade ICE manual ACL Port Mirroring, Viewing ACL Statistics, RS G8124config# access-control list ACL number mirror port

G8124-E, G8124 specifications

The Blade ICE G8124 is a cutting-edge networking solution designed for high-performance data center environments. It has emerged as a popular choice among organizations that require reliable and efficient network infrastructure to support their growing demands for bandwidth and low-latency connectivity.

One of the key features of the Blade ICE G8124 is its high port density. This networking device typically offers 24 ports of 10 Gigabit Ethernet, ensuring that businesses can connect numerous devices without requiring extensive physical space. The design is also scalable, accommodating future expansion as organizational needs grow.

Another significant aspect of the G8124 is its advanced switching capabilities. It utilizes a non-blocking architecture, enabling simultaneous data transmissions on all ports. This characteristic ensures that there is no bottleneck in the network traffic, providing the high performance needed in data-intensive applications.

The G8124 incorporates various technologies to enhance its functionalities. It supports Layer 2 and Layer 3 switching, making it versatile for different networking needs. Additionally, it features comprehensive Quality of Service (QoS) settings that prioritize critical applications, such as VoIP and video streaming, ensuring smooth operation even under heavy loads.

In terms of security, the Blade ICE G8124 provides robust measures to protect the network. It supports features such as Access Control Lists (ACLs), port security, and VLANs, allowing administrators to segment the network and restrict unauthorized access. These security capabilities are vital in today’s landscape, where cyber threats are increasingly common.

Moreover, the G8124 offers excellent management features. It includes an intuitive user interface for easy configuration and monitoring of network performance. SNMP support allows integration with network management systems, providing administrators with insights needed to optimize their operations.

Power efficiency is also a hallmark of the Blade ICE G8124. It employs energy-saving technologies that reduce operational costs, an essential factor for environmentally-conscious organizations striving to minimize their carbon footprint.

In summary, the Blade ICE G8124 stands out with its high port density, advanced switching capabilities, robust security features, and efficient management options. This networking solution is designed to meet the demands of modern data centers, providing the performance, reliability, and scalability that organizations require. With its innovative technologies, the G8124 ensures that businesses can navigate the complexities of today's networking landscape effectively.