BLADEOS 6.5.2 Application Guide

Neighbors and Adjacencies

In areas with two or more routing devices, neighbors and adjacencies are formed.

Neighbors are routing devices that maintain information about each others’ health. To establish neighbor relationships, routing devices periodically send hello packets on each of their interfaces. All routing devices that share a common network segment, appear in the same area, and have the same health parameters (hello and dead intervals) and authentication parameters respond to each other’s hello packets and become neighbors. Neighbors continue to send periodic hello packets to advertise their health to neighbors. In turn, they listen to hello packets to determine the health of their neighbors and to establish contact with new neighbors.

The hello process is used for electing one of the neighbors as the area’s Designated Router (DR) and one as the area’s Backup Designated Router (BDR). The DR is adjacent to all other neighbors and acts as the central contact for database exchanges. Each neighbor sends its database information to the DR, which relays the information to the other neighbors.

The BDR is adjacent to all other neighbors (including the DR). Each neighbor sends its database information to the BDR just as with the DR, but the BDR merely stores this data and does not distribute it. If the DR fails, the BDR will take over the task of distributing database information to the other neighbors.

The Link-State Database

OSPF is a link-state routing protocol. A link represents an interface (or routable path) from the routing device. By establishing an adjacency with the DR, each routing device in an OSPF area maintains an identical Link-State Database (LSDB) describing the network topology for its area.

Each routing device transmits a Link-State Advertisement (LSA) on each of its active interfaces. LSAs are entered into the LSDB of each routing device. OSPF uses flooding to distribute LSAs between routing devices. Interfaces may also be passive. Passive interfaces send LSAs to active interfaces, but do not receive LSAs, hello packets, or any other OSPF protocol information from active interfaces. Passive interfaces behave as stub networks, allowing OSPF routing devices to be aware of devices that do otherwise participate in OSPF (either because they do not support it, or because the administrator chooses to restrict OSPF traffic exchange or transit).

When LSAs result in changes to the routing device’s LSDB, the routing device forwards the changes to the adjacent neighbors (the DR and BDR) for distribution to the other neighbors.

OSPF routing updates occur only when changes occur, instead of periodically. For each new route, if an adjacency is interested in that route (for example, if configured to receive static routes and the new route is indeed static), an update message containing the new route is sent to the adjacency. For each route removed from the route table, if the route has already been sent to an adjacency, an update message containing the route to withdraw is sent.

276 ￿ Chapter 20: OSPF

BMD00220, October 2010

Page 276
Image 276
Blade ICE G8124-E manual Neighbors and Adjacencies, Link-State Database

G8124-E, G8124 specifications

The Blade ICE G8124 is a cutting-edge networking solution designed for high-performance data center environments. It has emerged as a popular choice among organizations that require reliable and efficient network infrastructure to support their growing demands for bandwidth and low-latency connectivity.

One of the key features of the Blade ICE G8124 is its high port density. This networking device typically offers 24 ports of 10 Gigabit Ethernet, ensuring that businesses can connect numerous devices without requiring extensive physical space. The design is also scalable, accommodating future expansion as organizational needs grow.

Another significant aspect of the G8124 is its advanced switching capabilities. It utilizes a non-blocking architecture, enabling simultaneous data transmissions on all ports. This characteristic ensures that there is no bottleneck in the network traffic, providing the high performance needed in data-intensive applications.

The G8124 incorporates various technologies to enhance its functionalities. It supports Layer 2 and Layer 3 switching, making it versatile for different networking needs. Additionally, it features comprehensive Quality of Service (QoS) settings that prioritize critical applications, such as VoIP and video streaming, ensuring smooth operation even under heavy loads.

In terms of security, the Blade ICE G8124 provides robust measures to protect the network. It supports features such as Access Control Lists (ACLs), port security, and VLANs, allowing administrators to segment the network and restrict unauthorized access. These security capabilities are vital in today’s landscape, where cyber threats are increasingly common.

Moreover, the G8124 offers excellent management features. It includes an intuitive user interface for easy configuration and monitoring of network performance. SNMP support allows integration with network management systems, providing administrators with insights needed to optimize their operations.

Power efficiency is also a hallmark of the Blade ICE G8124. It employs energy-saving technologies that reduce operational costs, an essential factor for environmentally-conscious organizations striving to minimize their carbon footprint.

In summary, the Blade ICE G8124 stands out with its high port density, advanced switching capabilities, robust security features, and efficient management options. This networking solution is designed to meet the demands of modern data centers, providing the performance, reliability, and scalability that organizations require. With its innovative technologies, the G8124 ensures that businesses can navigate the complexities of today's networking landscape effectively.