Appendix B Concepts

QoS

QoS

This section describes Quality of Service (QoS) parameters, including the following:

IP Precedence

PPP Fragmentation and Interleaving

CBWFQ

RSVP

Low Latency Queuing

QoS refers to the capability of a network to provide better service to selected network traffic over various technologies, including ATM, Ethernet and IEEE 802.1 networks, and IP-routed networks that may use any or all of these underlying technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by some real-time and interactive traffic), and improved loss characteristics. QoS technologies provide the elemental building blocks for future business applications in campus, WAN, and service provider networks.

QoS must be configured throughout your network, not just on your router running VoIP, to improve voice network performance. Not all QoS techniques are appropriate for all network routers. Edge routers and backbone routers in your network do not necessarily perform the same operations; the QoS tasks they perform might differ as well. To configure your IP network for real-time voice traffic, you need to consider the functions of both edge and backbone routers in your network.

QoS software enables complex networks to control and predictably service a variety of networked applications and traffic types. Almost any network can take advantage of QoS for optimum efficiency, whether it is a small corporate network, an Internet service provider, or an enterprise network.

IP Precedence

You can partition traffic in up to six classes of service using IP Precedence (two others are reserved for internal network use). The queuing technologies throughout the network can then use this signal to expedite handling.

Features such as policy-based routing and committed access rate (CAR) can be used to set precedence based on extended access-list classification. This allows considerable flexibility for precedence assignment, including assignment by application or user, by destination and source subnet, and so on. Typically this functionality is deployed as close to the edge of the network (or administrative domain) as possible, so that each subsequent network element can provide service based on the determined policy.

IP Precedence can also be set in the host or network client with the signaling used optionally. IP Precedence enables service classes to be established using existing network queuing mechanisms (such as class-based weighted fair queuing [CBWFQ]) with no changes to existing applications or complicated network requirements.

PPP Fragmentation and Interleaving

With multiclass multilink PPP interleaving, large packets can be multilink-encapsulated and fragmented into smaller packets to satisfy the delay requirements of real-time voice traffic; small real-time packets, which are not multilink encapsulated, are transmitted between fragments of the large packets. The interleaving feature also provides a special transmit queue for the smaller, delay-sensitive packets, enabling them to be transmitted earlier than other flows. Interleaving provides the delay bounds for delay-sensitive voice packets on a slow link that is used for other best-effort traffic.

Cisco Secure Router 520 Series Software Configuration Guide

 

OL-14210-01

B-7

 

Page 139
Image 139
Cisco Systems 520 series manual QoS, IP Precedence, PPP Fragmentation and Interleaving