Description of Connection Types on the FRSM

PVC Status Management

The management of ATM layer and FR PVC status management can operate independently. The PVC status from the ATM layer is used when determining the status of the FR PVC. However, no direct actions of mapping LMI A bit to OAM AIS is performed.

Frame Relay-to-ATM Service Interworking

By specifying a service interworking (SIW) channel type when you add a Frame Relay PVC to an FRSM, all data is subject to SIW translation and mapping in both the Frame Relay-to-ATM and ATM-to-Frame Relay directions. A BPX 8620 network with SIW connections appears in Figure 6-3.

Figure 6-3 BPX 8600-Series Network with SIW Connections

T1 or E1

ATM FUNI CPE

ATM UNI CPE

T1 or E1

FRSM

RPM

MGX 8850

BPX 8620 network

PVCs

BPX 8620

B

X

M

T3, E3, OC3

ATM-UNI CPE

MGX 8850 FRSM

FR UNI

CPE

17909

In Figure 6-3,an MGX 8850 node on the right has three Frame Relay SIW connections terminating on an FRSM. Three far-end terminations for these connections appear in other parts of Figure 6-3:

ATM FUNI (framed UNI) port on an FRSM

ATM UNI port on an RPM

ATM UNI port on a BPX 8600-series BXM card

In addition to frame-to-cell and DLCI-to-VPI/VCI conversion, SIW maps cell loss priority and congestion data between the Frame Relay and ATM formats and is FRF.8-compliant. It provides full support for routed and bridged PDUs, transparent and translation modes, and VP translation.

Cell Loss Priority

In addition to frame-to-cell and DLCI-to-VPI/VCI conversion, the SIW feature maps cell loss priority (CLP) and congestion information from Frame Relay-to-ATM formats.

You can modify the CLP and congestion indicators for individual connections. On the CLI., use the cnfchanmap command. In the Frame Relay-to-ATM direction, you can specify one of the following discard eligibility (DE)-to-cell loss priority (CLP) schemes for an individual SIW connection:

DE bit in the Frame Relay frame is mapped to the CLP bit of every ATM cell generated by frame segmentation.

CLP is always 0.

6-24Cisco MGX 8850 Installation and Configuration, Release 1.1.00, Part Number 78-6186-02

Page 24
Image 24
Cisco Systems MGX-FRSM-2CT3 manual Frame Relay-to-ATM Service Interworking, PVC Status Management, Cell Loss Priority

MGX-FRSM-HS2, MGX-FRSM-2T3E3, MGX-FRSM-2CT3 specifications

Cisco Systems is a leader in networking technology and infrastructure, providing solutions that drive innovation and efficiency for businesses worldwide. Among its diverse range of products, the MGX series stands out as a pivotal component for the network-centric era, especially with models like MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2. These modules are primarily designed for the MGX 8800 series routers, facilitating efficient traffic management and service delivery.

The MGX-FRSM-2CT3 is a versatile module that supports two T3 connections. It allows network operators to seamlessly integrate high-capacity circuit-switched and packet-switched data on a unified platform. This versatility is crucial for service providers looking to enhance their bandwidth offerings while ensuring reliable performance across voice, video, and data applications.

In contrast, the MGX-FRSM-2T3E3 module caters to operators needing E3 support. This feature allows for efficient data transport over a broader bandwidth, catering to European standards. The E3 configuration is vital for service providers operating in Europe or regions that utilize E3 technology prominently.

The MGX-FRSM-HS2 module is another significant offering, designed to accommodate the increasing demand for high speed and high capacity. It supports higher-order TDM and packet technologies, enabling operators to implement advanced services such as VoIP, video conferencing, and other data-intensive applications. This module provides scalability and reliability, making it ideal for next-generation networks.

All three modules leverage Cisco’s advanced switching and routing technology, ensuring optimal performance and minimal latency. The integration of Quality of Service (QoS) features allows network administrators to prioritize traffic types effectively, ensuring mission-critical applications receive the necessary bandwidth.

Additionally, these MGX modules support various signaling protocols, enabling interoperability with existing network infrastructure while also facilitating the migration to newer technologies. They play an essential role in modernizing telecom networks, allowing service providers to adapt to changing market demands and technology landscapes.

In summary, the Cisco MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2 modules are key components for businesses looking to enhance their networking capabilities. With their robust support for T3 and E3 technologies, high scalability, and advanced QoS features, these modules empower service providers to deliver a wide range of services, drive innovation, and meet the growing demands of users in an increasingly connected world.