Tasks for Configuring Cards and Services

PXM, the connections are global logical connections (GLCNs). By default, all resources on a a card or logical port are available to any controller on a first-come, first-served basis. If necessary, you can modify the resource partitioning at the card level or logical port level. Port-level resource modification follows card-level modification, so the available port-level resources depend on whether and how much you change the card-level resource partitioing. You do not have to change the resource partitioning for the card before changing resource partitioning for a port.

The current network control application is Portable AutoRoute (PAR). Planning considerations should include the possibility of modifying the partitioning of resources for the interface. For example, the MGX 8850 switch has the capacity to support a Cisco Multi-Protocol Label Switching (MPLS) controller or a Private Network to Network Interface (PNNI) controller.

Sequence of Configuration Tasks

In a new switch, the common approach is to configure the same aspect for all cards at once—adding logical ports to all applicable cards, for example. In contrast, the likely sequence for installing a single card is to begin with its card-level features and continue until you have configured every connection. The common tasks for a new switch are:

1Optionally configure the service modules (except the RPM) for redundancy. This card-level operation requires redundant cards and possibly an MGX-SRM-3T3/B.

2Optionally configure resource partitioning for the whole card if the default partitioning does not fulfill the purpose of the card.

3Activate physical lines.

4Configure the line if default parameters are not appropriate.

5Create the logical ports then modify them as needed.

6Optionally configure resource partitions for a logical port if the default partitioning does not support the intended operation of the port.

7Add connections then modify them as needed.

Rules for Adding Connections

This section describes the rules for adding local connections, three-segment connections, and management connections. The MGX 8850 switch can support:

Local-only, digital access and cross-connect (DAX) connections

Three-segment connections across an ATM or Frame Relay network

IP management connections (stand-alone switches only)

A management connection is an inband IP connection that lets a workstation control a local or remote MGX 8850 switch through a service module rather than the Ethernet port on a PXM-UI. Although the rules include references to CLI syntax, they also apply to the Cisco WAN Manager application.

6-2Cisco MGX 8850 Installation and Configuration, Release 1.1.00, Part Number 78-6186-02

Page 2
Image 2
Cisco Systems MGX-FRSM-2T3E3, MGX-FRSM-2CT3, MGX-FRSM-HS2 Sequence of Configuration Tasks, Rules for Adding Connections

MGX-FRSM-HS2, MGX-FRSM-2T3E3, MGX-FRSM-2CT3 specifications

Cisco Systems is a leader in networking technology and infrastructure, providing solutions that drive innovation and efficiency for businesses worldwide. Among its diverse range of products, the MGX series stands out as a pivotal component for the network-centric era, especially with models like MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2. These modules are primarily designed for the MGX 8800 series routers, facilitating efficient traffic management and service delivery.

The MGX-FRSM-2CT3 is a versatile module that supports two T3 connections. It allows network operators to seamlessly integrate high-capacity circuit-switched and packet-switched data on a unified platform. This versatility is crucial for service providers looking to enhance their bandwidth offerings while ensuring reliable performance across voice, video, and data applications.

In contrast, the MGX-FRSM-2T3E3 module caters to operators needing E3 support. This feature allows for efficient data transport over a broader bandwidth, catering to European standards. The E3 configuration is vital for service providers operating in Europe or regions that utilize E3 technology prominently.

The MGX-FRSM-HS2 module is another significant offering, designed to accommodate the increasing demand for high speed and high capacity. It supports higher-order TDM and packet technologies, enabling operators to implement advanced services such as VoIP, video conferencing, and other data-intensive applications. This module provides scalability and reliability, making it ideal for next-generation networks.

All three modules leverage Cisco’s advanced switching and routing technology, ensuring optimal performance and minimal latency. The integration of Quality of Service (QoS) features allows network administrators to prioritize traffic types effectively, ensuring mission-critical applications receive the necessary bandwidth.

Additionally, these MGX modules support various signaling protocols, enabling interoperability with existing network infrastructure while also facilitating the migration to newer technologies. They play an essential role in modernizing telecom networks, allowing service providers to adapt to changing market demands and technology landscapes.

In summary, the Cisco MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2 modules are key components for businesses looking to enhance their networking capabilities. With their robust support for T3 and E3 technologies, high scalability, and advanced QoS features, these modules empower service providers to deliver a wide range of services, drive innovation, and meet the growing demands of users in an increasingly connected world.