Configuring Frame Relay Service

mastership indicates if this end of the connection is master or slave: 1=master, 2=slave.

connID is the connection identifier at the remote end. It appears in the syntax as an optional parameter because it is mandatory only when you add the connection at the master end. See “Rules for Adding Connections” at the beginning of this chapter. connID can have one the following formats according to the slave endpoint:

Nodename.SlotNo.PortNo.DLCI

Nodename.SlotNo.PortNo.ControllerId.DLCI

Nodename.SlotNo.PortNo.VPI.VCI for ATM endpoint

controllerID is a number indicating the type of network control application: 1=PAR, 2=PNNI, 3=MPLS

For AX-FRSM-8T1 and AX-FRSM-8E1:

addcon <port> <DLCI> <cir> <chan_type> [CAC] <controller_type> <mastership> <connID> <controllerID>

port is the logical port number in the range 1–192 for T1 or 1–248 for E1. (See addport step if necessary.)

DLCI is the DLCI number in the range 0–1023.

cir is the committed information rate in one of the following ranges: for T1, 0–1536000 bps for T1; for E1, 0–2048000 bps.

chan_type specifies the type of connection: 1=NIW, 2=SIW-transparent mode; 3=SIW with translation; 4=FUNI, and 5=frame forwarding.

CAC optionally enables connection admission control: 1=enable. 2=disable (default).

controller_type is the controller type for signaling: 1=PVC (PAR), the default, 2=SPVC (PNNI).

mastership indicates if this end of the connection is master or slave: 1=master, 2=slave.

connID is the connection identifier at the remote end and can have one the following formats according to the type of card at the slave endpoint:

NodeName.SlotNo.PortNo.DLCI

NodeName.SlotNo.PortNo.ControllerId.DLCI

NodeName.SlotNo.PortNo.VPI.VCI for ATM endpoint

If the remote end is a PXM, the port number can be in the range 1–32 for user connections or 34 for inband management connections (stand-alone node only).

controllerID is a number indicating the type of network control application: 1=PAR, 2=PNNI, 3=TAG.

For MGX-FRSM-HS1/B:

addcon <port_number> <DLCI> <CIR> <chan_type> <CAC> <Controller_type> <mastership> <connID>

port_number is the logical port in the range 1–4.

DLCI is the DLCI in the range 0–1023.

6-32Cisco MGX 8850 Installation and Configuration, Release 1.1.00, Part Number 78-6186-02

Page 32
Image 32
Cisco Systems MGX-FRSM-2T3E3, MGX-FRSM-2CT3, MGX-FRSM-HS2 manual Configuring Frame Relay Service

MGX-FRSM-HS2, MGX-FRSM-2T3E3, MGX-FRSM-2CT3 specifications

Cisco Systems is a leader in networking technology and infrastructure, providing solutions that drive innovation and efficiency for businesses worldwide. Among its diverse range of products, the MGX series stands out as a pivotal component for the network-centric era, especially with models like MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2. These modules are primarily designed for the MGX 8800 series routers, facilitating efficient traffic management and service delivery.

The MGX-FRSM-2CT3 is a versatile module that supports two T3 connections. It allows network operators to seamlessly integrate high-capacity circuit-switched and packet-switched data on a unified platform. This versatility is crucial for service providers looking to enhance their bandwidth offerings while ensuring reliable performance across voice, video, and data applications.

In contrast, the MGX-FRSM-2T3E3 module caters to operators needing E3 support. This feature allows for efficient data transport over a broader bandwidth, catering to European standards. The E3 configuration is vital for service providers operating in Europe or regions that utilize E3 technology prominently.

The MGX-FRSM-HS2 module is another significant offering, designed to accommodate the increasing demand for high speed and high capacity. It supports higher-order TDM and packet technologies, enabling operators to implement advanced services such as VoIP, video conferencing, and other data-intensive applications. This module provides scalability and reliability, making it ideal for next-generation networks.

All three modules leverage Cisco’s advanced switching and routing technology, ensuring optimal performance and minimal latency. The integration of Quality of Service (QoS) features allows network administrators to prioritize traffic types effectively, ensuring mission-critical applications receive the necessary bandwidth.

Additionally, these MGX modules support various signaling protocols, enabling interoperability with existing network infrastructure while also facilitating the migration to newer technologies. They play an essential role in modernizing telecom networks, allowing service providers to adapt to changing market demands and technology landscapes.

In summary, the Cisco MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2 modules are key components for businesses looking to enhance their networking capabilities. With their robust support for T3 and E3 technologies, high scalability, and advanced QoS features, these modules empower service providers to deliver a wide range of services, drive innovation, and meet the growing demands of users in an increasingly connected world.