Removing and Installing a Line Card

Figure 5

Ejector Levers

When inserting a card, make sure the ejector lever hooks catch the lip of the card cage.

H7681

Caution When you install a line card, always use the ejector levers to ensure that the card is correctly aligned with the backplane connector, the card connector pins make contact with the backplane in the correct order, and the card is fully seated in the backplane. A card that is only partially seated in the backplane can cause the router to hang and subsequently crash.

Step 5 Simultaneously pivot both ejector levers toward each other until they are perpendicular to the line card faceplate. This action firmly seats the card in the backplane.

Step 6 Use a 3/16-inch flat-blade screwdriver to tighten the captive screw on each end of the line card faceplate to ensure proper EMI shielding and to prevent the line card from becoming partially dislodged from the backplane.

Caution To ensure adequate space for additional line cards, always tighten the captive installation screws on each newly installed line card before you insert any additional line cards. These screws also prevent accidental removal and provide proper grounding and EMI shielding for the router.

Step 7 Install the cable-management bracket.

Step 8 Install GBIC or SFP modules, and EPA daughter cards, in the line cards that use them. Step 9 Install the interface cables.

For information on installing cable-management brackets, see the “Installing a Line Card

Cable-Management Bracket” section on page 41.

For information on installing EPAs, see the “Removing and Installing EPAs” section on page 15.

For information on installing GBICs, see the “Removing and Installing GBICs” section on page 23.

For information on installing SFP modules, see the “Removing and Installing SFP Modules” section on page 26.

For information on installing interface cables, see the “Removing and Installing Fiber-Optic Interface Cables” section on page 52.

Cisco XR 12000 Series Router Ethernet Line Card Installation

14

OL-7861-01

 

 

Page 14
Image 14
Cisco Systems XR 12000 Series specifications Ejector Levers

XR 12000 Series specifications

The Cisco Systems XR 12000 Series routers are designed to meet the demands of modern networking environments, ensuring high performance, scalability, and reliability for service providers and large enterprises. This series is engineered to deliver advanced features that facilitate a range of applications, including core routing, edge services, and data center interconnect.

One of the main features of the XR 12000 Series is its advanced routing capabilities. These routers utilize the Cisco IOS XR software architecture, which provides a modular and distributed operating system. This architecture enhances system reliability as individual processes can be restarted independently without affecting overall system operations. As a result, service providers can achieve higher uptime and enhanced service continuity.

The XR 12000 Series supports a robust set of technologies that enable efficient data handling and transport. Notably, the series includes support for Multiprotocol Label Switching (MPLS), which enhances traffic engineering, distributed bandwidth management, and Quality of Service (QoS) capabilities. This makes the XR 12000 a preferred choice for operators looking to optimize their network performance under increasing traffic loads.

Furthermore, the XR 12000 Series excels in scalability. With a flexible modular design, operators can customize their systems to fit specific needs by adding additional line cards or service modules. These enhancements enable operators to scale both up and down based on fluctuating demands, accommodating numerous high-bandwidth applications such as video streaming, cloud services, and IoT.

Security is another critical characteristic of the XR 12000 routers. Built-in cybersecurity features, including secure boot, strong encryption, and integrity checks, protect against unauthorized access and ensure data integrity. Coupled with advanced monitoring and logging capabilities, these routers can help operators maintain robust security postures.

Additionally, the XR 12000 Series is designed to facilitate seamless integration with existing network infrastructures. The routers support various protocols and interfaces, which ensure interoperability with legacy systems and enhance overall network efficiency. This flexibility allows service providers to future-proof their investments while adapting to evolving technological landscapes.

In summary, the Cisco XR 12000 Series routers stand out for their advanced routing capabilities, scalability, robust security features, and compatibility with modern and legacy network infrastructures. These attributes make them an ideal choice for organizations seeking to enhance their networking capabilities in a rapidly changing digital environment.