Separate Storage Network for XenServer (Optional)

labels "cloud-guest" and "cloud-guest2". After the management server is installed and running, you must add the networks and use these labels so that CloudPlatform is aware of the networks.

Follow this procedure on each new host before adding the host to CloudPlatform:

1.Run xe network-list and find one of the guest networks. Once you find the network make note of its UUID. Call this <UUID-Guest>.

2.Run the following command, substituting your own name-label and uuid values.

#xe network-param-set name-label=<cloud-guestN> uuid=<UUID-Guest>

3.Repeat these steps for each additional guest network, using a different name-label and uuid each time.

8.10.3. Separate Storage Network for XenServer (Optional)

You can optionally set up a separate storage network. This should be done first on the host, before implementing the bonding steps below. This can be done using one or two available NICs. With two NICs bonding may be done as above. It is the administrator's responsibility to set up a separate storage network.

Give the storage network a different name-label than what will be given for other networks.

For the separate storage network to work correctly, it must be the only interface that can ping the primary storage device's IP address. For example, if eth0 is the management network NIC, ping -I eth0 <primary storage device IP> must fail. In all deployments, secondary storage devices must be pingable from the management network NIC or bond. If a secondary storage device has been placed on the storage network, it must also be pingable via the storage network NIC or bond on the hosts as well.

You can set up two separate storage networks as well. For example, if you intend to implement iSCSI multipath, dedicate two non-bonded NICs to multipath. Each of the two networks needs a unique name-label.

If no bonding is done, the administrator must set up and name-label the separate storage network on all hosts (masters and slaves).

Here is an example to set up eth5 to access a storage network on 172.16.0.0/24.

#xe pif-list host-name-label='hostname' device=eth5 uuid(RO): ab0d3dd4-5744-8fae-9693-a022c7a3471d device ( RO): eth5

#xe pif-reconfigure-ip DNS=172.16.3.3 gateway=172.16.0.1 IP=172.16.0.55 mode=static netmask=255.255.255.0 uuid=ab0d3dd4-5744-8fae-9693-a022c7a3471d

8.10.4. NIC Bonding for XenServer (Optional)

XenServer supports Source Level Balancing (SLB) NIC bonding. Two NICs can be bonded together to carry public, private, and guest traffic, or some combination of these. Separate storage networks are also possible. Here are some example supported configurations:

2 NICs on private, 2 NICs on public, 2 NICs on storage

2 NICs on private, 1 NIC on public, storage uses management network

107

Page 115
Image 115
Citrix Systems 4.2 manual Separate Storage Network for XenServer Optional, NIC Bonding for XenServer Optional

4.2 specifications

Citrix Systems, a leading provider of virtualization solutions and cloud computing technologies, released version 4.2 of its popular software, Citrix XenApp, which was previously known as Presentation Server. This version marked a significant evolution in providing users with remote access to applications and desktops, emphasizing simplicity, performance, and security.

One of the standout features of Citrix XenApp 4.2 is its improved application streaming capabilities. This technology allows applications to be delivered to users in real-time, reducing the need for extensive local installations and enhancing the user experience. With application streaming, administrators can efficiently manage applications on a central server while ensuring that users have immediate access to the necessary tools.

Another highlight of this version is the enhanced security measures put in place to protect sensitive data. Citrix XenApp 4.2 includes support for SSL encryption, providing a secure communication channel for data transmitted between the server and clients. This is particularly crucial for businesses that need to comply with strict data protection regulations. Additionally, the integration of endpoint security features ensures that unauthorized access to applications is minimized.

Performance enhancements are also a critical focus in this release. Citrix optimized the delivery of applications over various network conditions, ensuring that users experience minimal latency regardless of their location. This was achieved through the incorporation of SmartAccess and SmartControl technologies, which allow administrators to set policies based on user roles, device types, and network conditions. This level of granularity enables organization-wide security without compromising on usability.

The user experience was further improved with a revamped interface, making it easier for end-users to access their applications and data. Simplified menus, clear navigation paths, and the ability to customize user settings contributed to a more efficient workflow, allowing users to focus on their tasks rather than struggling with the software.

Finally, Citrix XenApp 4.2 was designed to be highly scalable. Organizations of all sizes could deploy this solution to deliver applications efficiently, adapting to their specific needs as their user base grows or changes. This flexibility is crucial for businesses looking to future-proof their IT investments while maintaining optimal performance.

In summary, Citrix XenApp 4.2 stands out with its enhanced application streaming, robust security features, improved performance under varying conditions, user-friendly interface, and scalability, making it an ideal choice for organizations seeking to leverage virtualization for remote access to applications and desktops.