HEATING LOAD FORM

FRIEDRICH ROOM UNIT HEAT PUMPS

 

BTU/HR PER

WALLS: (Linear Feet)

°F TEMP. DIFFERENCE

2” Insulation

Lin. Ft. x 1.6

Average

Lin. Ft. x 2.6

WINDOWS & DOORS (Area, sq. ft.)

 

Single Glass:

Sq. Ft. x 1.13

Double Glass:

Sq. Ft. x 0.61

INFILTRATION - WINDOWS & DOORS: AVG.

Lin. Ft. x 1.0

Loose

Lin. Ft. x 2.0

CEILING: (Area, Sq. Ft.)

 

Insulated (6”)

Sq. Ft. x 0.07

Insulated (2”)

Sq. Ft. x 0.10

Built-up Roof (2” insulated

Sq. Ft. x 0.10

Built-up Roof (1/2” insulated)

Sq. Ft. x 0.20

No Insulation

Sq. Ft. x 0.33

FLOOR: (Area, Sq. Ft.)

 

Above Vented Crawl space

 

Insulated (1:)

Sq. Ft. x 0.20

Uninsulated

Sq. Ft. x 0.50

* Slab on Ground

Lin. Ft. x 1.70

1” Perimeter insulation

Lin. Ft. x 1.00

* Based on Linear Feet of outside wall

TOTAL HEAT LOSS PER °F BTU/HR/°F

Multiply total BTU/HR/°F X 30 and plot on the graph below at 40°F. Draw a straight line from the 70 base point thru the point plotted at 40°F. The intersection of this heat loss line with the unit capacity line represents the winter design heating load.

83

Page 84
Image 84
Friedrich R-410A service manual Heating Load Form Friedrich Room Unit Heat Pumps, Windows & Doors Area, sq. ft

R-410A specifications

Friedrich R-410A is an advanced refrigerant widely used in HVAC (Heating, Ventilation, and Air Conditioning) systems, known for its high efficiency and environmental friendliness. As a hydrofluorocarbon (HFC) blend, R-410A has become the preferred alternative to R-22, which is being phased out due to its ozone-depleting potential. One of the main features of R-410A is its high latent heat of vaporization, which allows for efficient heat transfer and improved cooling performance in air conditioning units.

Technologically, R-410A operates at higher pressures than older refrigerants, meaning systems designed for R-410A need to be built with more robust components to safely handle these pressures. This results in a more compact system design that offers enhanced performance and reliability. The dual-component nature of R-410A—composed of difluoromethane (R-32) and pentafluoroethane (R-125)—provides an optimal balance of thermodynamic properties, leading to superior energy efficiency, especially in variable speed applications.

In terms of characteristics, R-410A has a higher cooling capacity, which enables HVAC systems to effectively cool larger spaces or run more efficiently when cooling smaller areas. The refrigerant is non-toxic and non-flammable, which enhances safety during its use. In addition, R-410A has a lower global warming potential relative to other refrigerants, making it a more environmentally responsible choice for modern cooling systems.

Moreover, R-410A systems typically require less refrigerant charge due to their efficiency, contributing to reduced greenhouse gas emissions. The adoption of R-410A aligns with regulatory trends aimed at minimizing the environmental impact of refrigerants in cooling applications.

Overall, the Friedrich R-410A refrigerant embodies a combination of technology and environmental stewardship, making it a cornerstone of contemporary HVAC design. Its ability to provide effective and energy-efficient cooling solutions while being compliant with modern environmental regulations positions R-410A as the refrigerant of choice for engineers and installers focused on sustainability and performance in air conditioning systems.