Fujitsu MHD2032AT, MHC2032AT, MHD2021AT, MHC2040AT manual Interface

Models: MHC2040AT MHC2032AT MHD2032AT MHD2021AT

1 219
Download 219 pages 60.51 Kb
Page 155
Image 155

Interface

5)The host shall assert STOP no sooner than tRP after negating HDMARDY-. The host shall not negate STOP again until after the Ultra DMA burst is terminated.

6)The device shall negate DMARQ within tLI after the host has asserted STOP. The device shall not assert DMARQ again until after the Ultra DMA burst is terminated.

7)If DSTROBE is negated, the device shall assert DSTROBE within tLI after the host has asserted STOP. No data shall be transferred during this assertion. The host shall ignore this transition on DSTROBE. DSTROBE shall remain asserted until the Ultra DMA burst is terminated.

8)The device shall release DD (15:0) no later than tAZ after negating

DMARQ.

9)The host shall drive DD (15:0) no sooner than tZAH after the device has negated DMARQ. For this step, the host may first drive DD (15:0) with the result of its CRC calculation (see 5.5.5).

10)If the host has not placed the result of its CRC calculation on DD (15:0) since first driving DD (15:0) during (9), the host shall place the result of its CRC calculation on DD (15:0) (see 5.5.5).

11)The host shall negate DMACK- no sooner than tMLI after the device has asserted DSTROBE and negated DMARQ and the host has asserted

STOP and negated HDMARDY-, and no sooner than tDVS after the host places the result of its CRC calculation on DD (15:0).

12)The device shall latch the host's CRC data from DD (15:0) on the negating edge of DMACK-.

13)The device shall compare the CRC data received from the host with the results of its own CRC calculation. If a miscompare error occurs during one or more Ultra DMA burst for any one command, at the end of the command, the device shall report the first error that occurred (see 5.5.5).

14)The device shall release DSTROBE within tIORDYZ after the host negates DMACK-.

15)The host shall neither negate STOP nor assert HDMARDY- until at least tACK after the host has negated DMACK-.

16)The host shall not assert DIOR-, CS0-, CS1-, DA2, DA1, or DA0 until at least tACK after negating DMACK.

5-84

C141-E050-02EN

Page 155
Image 155
Fujitsu MHD2032AT, MHC2032AT, MHD2021AT, MHC2040AT manual Interface

MHC2040AT, MHC2032AT, MHD2032AT, MHD2021AT specifications

Fujitsu offers a range of advanced hard disk drives (HDD) designed for various computing needs, including the MHD2021AT, MHD2032AT, MHC2032AT, and MHC2040AT models. These drives combine reliable performance, capacity options, and technological features aimed at enhancing data storage efficiency.

The Fujitsu MHD2021AT is known for its capacity of 20 GB, making it an excellent choice for users requiring a compact and efficient HDD. With a spindle speed of 5400 RPM, it balances speed and power consumption, catering to mobile computing and lower power devices. Its ATA interface ensures compatibility with a wide range of systems, making it a versatile option for various applications.

The MHD2032AT model offers a slightly higher capacity of 30 GB, maintaining similar technological attributes to its predecessor. With an enhanced data transfer rate, it allows for quicker access to stored files, perfect for users handling larger volumes of data. The robust error correction features in this model further ensure data integrity, making it a reliable choice for demanding environments.

For users needing more robust storage solutions, the MHC2032AT steps it up with features tailored for performance-heavy applications. Its 30 GB capacity is suited for desktop and workstation environments that require swift data retrieval and significant storage. The drive employs advanced caching techniques, which boost performance further by optimizing read and write operations, ensuring smoother multitasking capabilities.

The MHC2040AT is the flagship model in this line, providing an impressive storage capacity of 40 GB. This HDD is designed for high-performance applications where speed is crucial. The drive’s increased spindle speed and superior data transfer rates make it ideal for video editing, gaming, and large database management. Alongside its enhanced performance features, it includes advanced thermal management technology that maintains optimal operational temperatures, prolonging the drive's lifespan.

All four models leverage Fujitsu's commitment to data reliability, featuring robust shock resistance and low noise levels. Collectively, these drives cater to a spectrum of user needs, from compact data storage to high-capacity solutions, maintaining Fujitsu's reputation for quality and innovation in the storage market.