Theory of Device Operation

4.6.3 Read circuit

The head read signal from the PreAMP is regulated by the automatic gain control (AGC) circuit. Then the output is converted into the sampled read data pulse by the programmable filter circuit and the flash digitizer circuit. This clock signal is converted into the NRZ data by the 16/17 GCR decoder circuit based on the read data maximum-likelihood-detected by the Viterbi detection circuit, then is sent to the HDC.

(1) AGC circuit

The AGC circuit automatically regulates the output amplitude to a constant value even when the input amplitude level fluctuates. The AGC amplifier output is maintained at a constant level even when the head output fluctuates due to the head characteristics or outer/inner head positions.

(2) Programmable filter

The programmable filter circuit has a low-pass filter function that eliminates unnecessary high frequency noise component and a high frequency boost-up function that equalizes the waveform of the read signal.

Cut-off frequency of the low-pass filter and boost-up gain are controlled from the register in read channel by an instruction of the serial data signal from MPU (M5). The MPU optimizes the cut-off frequency and boost-up gain according to the transfer frequency of each zone.

Figure 4.5 shows the frequency characteristic sample of the programmalbe filter.

-3 dB

Figure 4.5 Frequency characteristic of programmable filter

4-12

C141-E050-02EN

Page 61
Image 61
Fujitsu MHD2021AT, MHC2032AT, MHC2040AT, MHD2032AT manual Read circuit, Frequency characteristic of programmable filter

MHC2040AT, MHC2032AT, MHD2032AT, MHD2021AT specifications

Fujitsu offers a range of advanced hard disk drives (HDD) designed for various computing needs, including the MHD2021AT, MHD2032AT, MHC2032AT, and MHC2040AT models. These drives combine reliable performance, capacity options, and technological features aimed at enhancing data storage efficiency.

The Fujitsu MHD2021AT is known for its capacity of 20 GB, making it an excellent choice for users requiring a compact and efficient HDD. With a spindle speed of 5400 RPM, it balances speed and power consumption, catering to mobile computing and lower power devices. Its ATA interface ensures compatibility with a wide range of systems, making it a versatile option for various applications.

The MHD2032AT model offers a slightly higher capacity of 30 GB, maintaining similar technological attributes to its predecessor. With an enhanced data transfer rate, it allows for quicker access to stored files, perfect for users handling larger volumes of data. The robust error correction features in this model further ensure data integrity, making it a reliable choice for demanding environments.

For users needing more robust storage solutions, the MHC2032AT steps it up with features tailored for performance-heavy applications. Its 30 GB capacity is suited for desktop and workstation environments that require swift data retrieval and significant storage. The drive employs advanced caching techniques, which boost performance further by optimizing read and write operations, ensuring smoother multitasking capabilities.

The MHC2040AT is the flagship model in this line, providing an impressive storage capacity of 40 GB. This HDD is designed for high-performance applications where speed is crucial. The drive’s increased spindle speed and superior data transfer rates make it ideal for video editing, gaming, and large database management. Alongside its enhanced performance features, it includes advanced thermal management technology that maintains optimal operational temperatures, prolonging the drive's lifespan.

All four models leverage Fujitsu's commitment to data reliability, featuring robust shock resistance and low noise levels. Collectively, these drives cater to a spectrum of user needs, from compact data storage to high-capacity solutions, maintaining Fujitsu's reputation for quality and innovation in the storage market.