Instructions d’installation

INVERSION DU SENS D’OUVERTURE DES PORTES (SUITE)

9FAITES PASSER LA POIGNÉE DE PORTE DU COMPARTIMENT CONGÉLATION À DROITE

MISE EN GARDE : Faites attention de ne pas égratigner la porte lorsque vous enlevez ou remettez la poignée en place. La poignée s’adapte fermement à la porte.

Enlevez les vis qui tiennent la poignée en haut et en bas de la porte. Enlevez la poignée.

Faites passer le bouton qui se trouve du côté droit de la porte dans le trou de vis de poignée du côté gauche.

Fixez la poignée du côté opposé en utilisant les trous les plus proches de l’arête de la porte.

10RÉINSTALLATION DES BUTÉES DE PORTE, DE L’APPUI DE CAME ET DU DISPOSITIF DE

FERMETURE À CAME

Sous la porte du congélateur, installez du côté gauche la butée de porte gauche, l’appui de came, les cales, ainsi que le morceau de papier d’aluminium.

10 RÉINSTALLATION DES BUTÉES DE PORTE, DE L’APPUI DE CAME ET DU DISPOSITIF DE FERMETURE À CAME (SUITE)

Sous la porte du réfrigérateur, installez du côté gauche la butée de porte gauche, le dispositif de fermeture à came, les cales, ainsi que le morceau de papier d’aluminium.

11ACCROCHEZ À NOUVEAU LA PORTE DU COMPARTIMENT RÉFRIGÉRATION

Faites descendre la porte du compartiment réfrigération sur l’axe de la charnière inférieure.

Assurez-vous que la rondelle est en place.

Axe de charnière

Redressez la porte et alignez-la au support de la charnière centrale.

Remontez l’axe de la charnière centrale avec une clef de 7/16 po et serrez jusqu’à ce qu’il soit dans le profil du support.

Axe de charnière

Charnière intermédiaire avec l’appui de came

Porte du réfrigérateur

70

Page 70
Image 70
GE 49-60111, 162D9625P005 installation instructions Accrochez À Nouveau LA Porte DU Compartiment Réfrigération

162D9625P005, 49-60111 specifications

The GE 49-60111, also known as 162D9625P005, is a highly regarded component within the realm of gas turbine engines, specifically engineered for applications in industrial and aerospace sectors. This product exemplifies General Electric's commitment to advancing power generation technologies with outstanding performance, efficiency, and reliability.

One of the main features of the GE 49-60111 is its robust construction, designed to withstand high temperatures and pressures often encountered in gas turbine operations. The component plays a crucial role in enhancing the overall thermal efficiency of the engine, which is a critical factor in fuel consumption and environmental impact.

The technology behind the GE 49-60111 integrates advanced materials and manufacturing techniques. This includes the use of high-performance alloys that provide enhanced durability while minimizing weight. The component is designed to maintain structural integrity under extreme operational conditions, which is vital for sustaining the engine's longevity and ensuring safety.

Another notable characteristic of the GE 49-60111 is its aerodynamic design. The component features optimized geometries that facilitate improved airflow, contributing to higher combustion efficiency. This design not only boosts performance but also contributes to lower emissions, aligning with modern regulatory requirements and environmental standards.

In terms of maintenance, the GE 49-60111 is engineered for ease of serviceability. Its design allows for straightforward inspection and replacement, minimizing downtime and maintenance costs for operators. This focus on maintenance efficiency is particularly valuable in industrial settings where operational reliability is paramount.

The GE 49-60111 also epitomizes the integration of digital technologies in modern gas turbine systems. Advanced sensors and monitoring systems are often incorporated to provide real-time data on component performance. This data-driven approach allows operators to predict maintenance needs, optimize performance, and extend the lifecycle of the turbine.

Overall, the GE 49-60111, 162D9625P005, stands as a testament to General Electric's innovation in gas turbine technology. With its combination of durability, efficiency, aerodynamic design, and advanced maintenance features, it serves as a critical component in the pursuit of enhanced power generation capabilities while navigating the challenges of modern energy demands.