Seguridad

Operación

Cómo insertar los paneles de la puerta.

Saque la guarnición superior en la puerta del congelador

Usando un destornillador de tornillos de cabeza tórica T-20 Torx, saque los dos tornillos que sujetan la guarnición superior.

Retire el panel lateral

Usando un destornillador de estrella, remueva los cuatro tornillos que se encuentran fijando el panel lateral al refrigerador y las puertas del congelador (2 tornillos en cada puerta).

Inserte el panel de la puerta del congelador

Baje el panel del congelador hasta que se deslice entrando en la ranura situada detrás del panel de la puerta. Empuje el panel de relleno (necesario en algunos paneles de puerta) hacia dentro detrás del panel decorativo.

Vuelva a instalar la guarnición superior en la puerta del congelador

Usando un destornillador de tornillos de cabeza tórica T-20 Torx, vuelva a instalar los dos tornillos que sujetan la guarnición superior. Apriete los dos tornillos aplicando una torsión de 30 libras por pulgada.

Inserte el panel del refrigerador

Empuje cuidadosamente el panel hacia dentro hasta que se deslice entrando en la ranura situada detrás del mango de la puerta. Empuje el panel de relleno (necesario en algunos paneles de puerta) hacia dentro detrás del panel decorativo.

Instalación

Soporte al consumidor Solucionar problemas

Huecos para tornillos en la moldura superior

Corte

Panel del congelador

Panel del compartimiento del refrigerador

Corte

Revestimiento azul de la cinta adhesiva

Moldura lateral del congelador

Moldura lateral del compartimiento del refrigerador

Revestimiento azul de la cinta adhesiva

92

Page 92
Image 92
GE 49-60111, 162D9625P005 Cómo insertar los paneles de la puerta, Saque la guarnición superior en la puerta del congelador

162D9625P005, 49-60111 specifications

The GE 49-60111, also known as 162D9625P005, is a highly regarded component within the realm of gas turbine engines, specifically engineered for applications in industrial and aerospace sectors. This product exemplifies General Electric's commitment to advancing power generation technologies with outstanding performance, efficiency, and reliability.

One of the main features of the GE 49-60111 is its robust construction, designed to withstand high temperatures and pressures often encountered in gas turbine operations. The component plays a crucial role in enhancing the overall thermal efficiency of the engine, which is a critical factor in fuel consumption and environmental impact.

The technology behind the GE 49-60111 integrates advanced materials and manufacturing techniques. This includes the use of high-performance alloys that provide enhanced durability while minimizing weight. The component is designed to maintain structural integrity under extreme operational conditions, which is vital for sustaining the engine's longevity and ensuring safety.

Another notable characteristic of the GE 49-60111 is its aerodynamic design. The component features optimized geometries that facilitate improved airflow, contributing to higher combustion efficiency. This design not only boosts performance but also contributes to lower emissions, aligning with modern regulatory requirements and environmental standards.

In terms of maintenance, the GE 49-60111 is engineered for ease of serviceability. Its design allows for straightforward inspection and replacement, minimizing downtime and maintenance costs for operators. This focus on maintenance efficiency is particularly valuable in industrial settings where operational reliability is paramount.

The GE 49-60111 also epitomizes the integration of digital technologies in modern gas turbine systems. Advanced sensors and monitoring systems are often incorporated to provide real-time data on component performance. This data-driven approach allows operators to predict maintenance needs, optimize performance, and extend the lifecycle of the turbine.

Overall, the GE 49-60111, 162D9625P005, stands as a testament to General Electric's innovation in gas turbine technology. With its combination of durability, efficiency, aerodynamic design, and advanced maintenance features, it serves as a critical component in the pursuit of enhanced power generation capabilities while navigating the challenges of modern energy demands.