Fig. 65: The Moon. Note the deep shadows in the craters.

Fig. 66: The planet Jupiter. Jupiter's four largest moons can be observed in a different position every night.

Fig. 67: Saturn has the most exten- sive ring structure in our Solar System.

BASIC ASTRONOMY

In the early 17th century Italian Scientist Galileo, using a telescope smaller than your LX200R, turned it skyward instead of looking at the distant trees and mountains. What he saw, and what he realized about what he saw, has forever changed the way mankind thinks about the universe. Imagine what it must have been like being the first human to see moons revolve around the planet Jupiter or to see the changing phas- es of Venus! Because of his observations, Galileo correctly realized Earth's move- ment and position around the Sun, and in doing so, gave birth to modern astronomy. Yet Galileo's telescope was so crude, he could not clearly make out the rings

of Saturn.

Galileo's discoveries laid the foundation for understanding the motion and nature of the planets, stars, and galaxies. Building on his foundation, Henrietta Leavitt deter- mined how to measure the distance to stars, Edwin Hubble gave us a glimpse into the possible origin of the universe, Albert Einstein unraveled the crucial relationship of time and light, and 21st-century astronomers are currently discovering planets around stars outside our solar system. Almost daily, using sophisticated successors to Galileo's telescope, such as the Hubble Space Telescope and the Chandra X-Ray Telescope, more and more mysteries of the universe are being probed and under- stood. We are living in the golden age of astronomy.

Unlike other sciences, astronomy welcomes contributions from amateurs. Much of the knowledge we have on subjects such as comets, meteor showers, double and vari- able stars, the Moon, and our solar system comes from observations made by ama- teur astronomers. So as you look through your Meade LX200R telescope, keep in mind Galileo. To him, a telescope was not merely a machine made of glass and metal, but something far more—a window of incredible discovery.

AutoStar II Glossary

Be sure to make use of AutoStar II’s Glossary feature. The Glossary menu provides an alphabetical listing of definitions and descriptions of common astronomical terms. Access directly through the Glossary menu or through hypertext words embedded in AutoStar II. See GLOSSARY MENU, page 27, for more information.

Objects in Space

Listed below are some of the many astronomical objects that can be seen with your LX200R:

The Moon

The Moon is, on average, a distance of 239,000 miles (380,000km) from Earth and is best observed during its crescent or half phase when Sunlight strikes the Moon’s sur- face at an angle. It casts shadows and adds a sense of depth to the view (Fig. 65). No shadows are seen during a full Moon, causing the overly bright Moon to appear flat and rather uninteresting through the telescope. Be sure to use a neutral Moon fil- ter when observing the Moon. Not only does it protect your eyes from the bright glare of the Moon, but it also helps enhance contrast, providing a more dramatic image.

Using your LX200R, brilliant detail can be observed on the Moon, including hundreds of lunar craters and maria, described below.

Craters are round meteor impact sites covering most of the Moon’s surface. With no atmosphere on the Moon, no weather conditions exist, so the only erosive force is meteor strikes. Under these conditions, lunar craters can last for millions of years.

Maria (plural for mare) are smooth, dark areas scattered across the lunar surface. These dark areas are large ancient impact basins that were filled with lava from the interior of the Moon by the depth and force of a meteor or comet impact.

Twelve Apollo astronauts left their bootprints on the Moon in the late 1960's and early 1970's. However, no telescope on Earth is able to see these footprints or any other artifacts. In fact, the smallest lunar features that may be seen with the largest tele- scope on Earth are about one-half mile across.

- 72 -

Looking at or near the Sun will cause irreversible damage to your eye. Do not point this telescope

 

at or near the Sun. Do not look through the telescope as it is moving.

Page 72
Image 72
Meade LX200 R instruction manual Basic Astronomy, AutoStar II Glossary, Objects in Space, Moon

LX200 R specifications

The Meade LX200 R is a renowned telescope that has captivated astronomers and enthusiasts alike with its impressive blend of advanced technology, user-friendly features, and excellent optical performance. Launched as part of Meade's line of enjoyable yet high-performing telescopes, the LX200 R remains a top choice for both amateur stargazers and serious astrophotographers.

At the heart of the LX200 R is its advanced telescope design. It features a robust, 8-inch primary mirror, which provides exceptional light-gathering capability. This larger aperture allows users to observe faint celestial objects, including distant galaxies, nebulae, and star clusters, with stunning clarity and detail. The telescope's reflective optics are coated with high-quality, anti-reflective coatings that enhance contrast and minimize light loss, ensuring crisp, clear images even in challenging viewing conditions.

One of the standout features of the LX200 R series is its sophisticated computer-controlled GoTo mount. This feature allows users to locate over 30,000 celestial objects with remarkable precision using a simple one-button operation. The dual-axis motor drives enable smooth tracking of objects across the night sky, making it easier to follow their movements. The mount also includes an integrated GPS system, which automatically adjusts the telescope's location and time settings for accurate alignment without requiring complex manual adjustments.

The LX200 R is configured for both visual observations and astrophotography, accommodating a wide range of accessories like cameras and focal reducers. Its sturdy construction minimizes vibrations, which is crucial for capturing sharp images during extended exposures. Additionally, the telescope's optical tube is designed to be both lightweight and durable, making it convenient for transport and setup in various observing locations.

The ergonomic design of the LX200 R also enhances user experience, featuring a comfortable eyepiece height and an intuitive control panel. The display is user-friendly, allowing even novice astronomers to navigate settings and options quickly. With its combination of high-quality optics, advanced tracking capabilities, and versatile design, the Meade LX200 R continues to be a preferred choice for anyone looking to explore the wonders of the universe with sophistication and ease.