Novatel SMART ANTENNA user manual 4.2Satellite-BasedAugmentation System SBAS, Chapter

Models: SMART ANTENNA

1 49
Download 49 pages 1.86 Kb
Page 28
Image 28
Positioning Modes of Operation

Chapter 4

Positioning Modes of Operation

 

 

Receiver Clock Errors – Receiver clock error is the time difference between GPS receiver time and true GPS time. All GPS receivers have differing clock offsets from GPS time that vary from receiver to receiver by an unknown amount depending on the oscillator type and quality (TCXO verses OCXO and so on).

Multipath Signal Reception – Multipath signal reception can potentially cause large pseudorange and carrier phase measurement biases. Multipath conditions are very much a function of specific antenna site location versus local geography and man-made structural influences. Severe multipath conditions could skew range measurements by as much as 100 meters or more.

4.2Satellite-Based Augmentation System (SBAS)

A Satellite-Based Augmentation System (SBAS) is a type of geo-stationary satellite system that improves the accuracy, integrity, and availability of the basic GPS signals. Accuracy is enhanced through the use of wide area corrections for GPS satellite orbits and ionospheric errors. Integrity is enhanced by the SBAS network quickly detecting satellite signal errors and sending alerts to receivers to not use the failed satellite. Availability is improved by providing an additional ranging signal to each SBAS geostationary satellite.

SBAS includes the Wide-Area Augmentation System (WAAS), the European Geo-Stationary Navigation System (EGNOS), and the MTSAT Satellite-Based Augmentation System (MSAS). At the time of publication, there are two WAAS satellites over the western Atlantic Ocean and the Pacific (PRN 122 and PRN 134 respectively) and one EGNOS satellite over the eastern Atlantic Ocean (PRN 120). SBAS data is available from any of these satellites and more satellites will be available in the future.

The primary functions of SBAS include:

data collection

determining ionospheric corrections

determining satellite orbits

determining satellite clock corrections

determining satellite integrity

independent data verification

SBAS message broadcast and ranging

system operations & maintenance

As shown in Figure 13 on Page 29, the SBAS is made up of a series of Reference Stations, Master Stations, Ground Uplink Stations and Geostationary Satellites (GEOs). The Reference Stations, which are geographically distributed, pick up GPS satellite data and route it to the Master Stations where wide area corrections are generated. These corrections are sent to the Ground Uplink Stations which up-link them to the GEOs for re-transmission on the GPS L1 frequency. These GEOs transmit signals which carry accuracy and integrity messages, and which also provide additional ranging signals for added availability, continuity and accuracy. These GEO signals are available over a wide area and can be received and processed by SUPERSTAR II receivers with appropriate firmware. GPS receivers are thus able to receive SBAS data in- band and use not only differential corrections, but also integrity, residual errors and ionospheric information for each monitored satellite.

The signal broadcast through the SBAS GEOs to the SBAS users is designed to minimize modifications to standard GPS receivers. As such, the GPS L1 frequency (1575.42 MHz) is used, together with GPS-type modulation - e.g. a Coarse/Acquisition (C/A) pseudorandom (PRN) code. In addition, the code phase timing is maintained close to GPS time to provide a ranging capability.

28

SMART ANTENNA User Manual Rev 6

Page 28
Image 28
Novatel SMART ANTENNA user manual 4.2Satellite-BasedAugmentation System SBAS, Chapter, Positioning Modes of Operation