Lincoln Electric SVM192-A Welding Process, TIG Constant Current Welding, ARC Gouging

Page 21

B-5

OPERATION

B-5

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

WELDING PROCESS

For any electrodes the procedures should be kept with- in the rating of the machine. For electrode information

see the appropriate Lincoln publication.

Stick (Constant Current) Welding

Connect welding cables to the “+” and - studs. Start the engine. The “RANGE” switch markings indicate the maximum current for that range as well as the typical electrode size for that range. The “OUTPUT” Control provides fine adjustment of the welding current within the select range. For maximum output within a select- ed range set the “OUTPUT” Control at 10. For mini- mum output within a selected range set the “OUTPUT” Control at 5. (“OUTPUT” Control settings below 5 may reduce arc stability) For best overall welding perfor- mance set the “RANGE” Switch to the lowest setting and the OUTPUT” Control near the maximum to achieve the desired welding current.

RANGE SETTING

TYPICAL

CURRENT RANGE

 

 

ELECTRODE SIZE

 

 

 

 

 

 

90 MAX.

3/32

50 TO 90 AMPS

 

 

 

 

 

145 MAX.

1/8

70 TO 145 AMPS

 

 

 

 

 

210 MAX.

5/32

120 TO 210 AMPS

 

 

 

 

TIG (CONSTANT CURRENT) WELDING

The K930-[ ] TIG Module installed on a EAGLE 10,000 provides high frequency and shielding gas control for GTAW (TIG) welding processes. Output Control is from the Eagle 10,000. The control on the TIG Module is not functional. After flow time is adjustable from 0 to 55 seconds. A K814 Arc Start Switch is required.

The K930-[ ] TIG Module should be used with the EAGLE 10,000 on HIGH IDLE to maintain satisfactory operation. It can be used in the AUTO position but the delay going to low idle after welding is ceased will be increased if the AFTER FLOW CONTROL is set above 10 seconds. A K814 Arc Start Switch is required.

WIRE FEED WELDING PROCESSES

The Innershield® electrode recommended for use with the EAGLE 10,000 is NR®-211-MP. The electrode sizes and welding ranges that can be used with the EAGLE 10,000 are shown in the following table:

Diameter

Wire Speed

Approximate

(in.)

Range In./Min.

Current Range

 

 

 

 

.035

80

- 110

75A to 120A

.045

70

- 130

120A to 170A

.068

40

- 90

125A to 210A

 

 

 

 

The EAGLE 10,000 is recommended for limited “MIG” welding (GMAW - gas metal arc welding). The recom- mended electrodes are .030” and .035” L-50 and L-56. They must be used with a blended shielding gas such as C25 (75% Argon - 25% CO2). The welding ranges that can be used with the EAGLE 10,000 are shown in the following table:

Diameter

Wire Speed

Approximate

(in.)

Range In./Min.

Current Range

 

 

 

 

.030

75

- 300

50A to 130A

.035

100

- 250

80A to 175A

 

 

 

 

ARC GOUGING

The EAGLE 10,000 can be used for limited arc goug- ing.

Set the Range switch to adjust output current to the desired level for the gouging electrode being used according to the ratings in the following table:

 

Carbon Diameter

CURRENT RANGE (DC+)

 

 

 

 

 

1/8

60 - 90 Amps

 

5/32

90 - 250 Amps

 

 

 

 

EAGLE™ 10,000

Image 21
Contents Eagle 10,000 Eagle 10,000 ISAFETYiElectric Shock can kill ARC Rays can burn SafetyFumes and Gases Can be dangerousWelding Cutting Powered equipmentCylinder may explode Sparks can cause fire or If damaged ExplosionSûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications Eagle 10,000 K2343-1,K2343-2Height Width Depth Weight Machine Grounding Safety PrecautionsSpark Arrester TowingFuel Gasoline Fuel only Vehicle MountingFollow vehicle manufacturer’s instructions Do not overfill tank, fuel expansion may cause overflowAngle of Operation Additional Safety Precautions High Altitude OperationLifting Location / VentilationAdditional Safety Precautions Connection of Lincoln Electric Wire FeedersInstructions Welder Operation120/240 Volt Dual Voltage Receptacle Auxiliary PowerDuplex Receptacles Motor StartingThese Devices Without Electrical Device USE with the Eagle 10,000Additional Resistive Type LoadsSimultaneous Welding and Power Auxiliary Power While WeldingStandby Power Connections Connection diagram shown Eagle 10,000Figure A.1 Connection of Eagle 10,000 to Premises WiringTable of Contents Operation Section Operation Engine SwitchGeneral Description Welder Controls Function and OperationOPERATIONB-3 Range SwitchEagle 10,000 Approximate Fuel Consumption Control DialBREAK-IN Period STARTING/SHUTDOWN InstructionsStarting the Engine Stopping the EngineWelding Process Wire Feed Welding ProcessesTIG Constant Current Welding ARC GougingSummary of Welding Processes Typical Current Ranges 1 for Tungsten ELECTRODES2Table of Contents Accessories Section Accessories Optional Equipment Field InstalledK1745-1 GAS Cylinder Holder Recommended Equipment Wire FeedPlasma Cutting Stick TIG WeldingEagle 10,000 Table of Contents Maintenance Section Safety Precautions MaintenanceEngine OIL Change Engine OIL Refill CapacitiesOIL Filter Change AIR Cleaner and Other MaintenanceEngine Adjustments Figure D.1 Major Component Locations Eagle 10,000 1TABLE of CONTENTS-THEORY of Operation Section E-1 Theory of Operation BATTERY, STARTER, ENGINE, ROTOR, STATOR, and Idler SolenoidFigure E.3 Rotor Field Feedback and Auxiliary Power Rotor Field Feedback Auxiliary PowerOutput BRIDGE, CHOKE, and Output Terminals Weld WINDING, REACTOR, and Range Switch1TABLE of Contents Troubleshooting and Repair F-1 HOW to USE Troubleshooting Guide 2TROUBLESHOOTING and REPAIRF-2PC Board Troubleshooting Procedures Troubleshooting and RepairPerform the Rotor Voltage Test Recommended Course of Action Problems Possible Areas Symptoms MisadjustmentsPossible Areas Misadjustments Problems SymptomsRotor Voltage2. PTestrform Engine Problems Wiring Charging Circuit Test BridgePerformTestthe. Output Rectifier Eagle 10,000 Rotor Voltage Test Test DescriptionMaterials Needed Test Procedure Remove the case top, then reinstall the fuel capRotor Voltage Test Rotor Resistance Test Remove the case top, then replace the fuel cap Rotor Resistance TestTroubleshooting and Repair Eagle 10,000 Auxiliary and Field Winding Test Auxiliary and Field Winding Test To test the 115 VAC windingTo test the 230 VAC winding To test the field winding Eagle 10,000 Output Rectifier Bridge Test Figure F.4 Location of Output Rectifier Leads Output Rectifier Bridge TestCharging Circuit Test Figure F.5 Location of Voltage Regulator Charging Circuit TestEngine Throttle Adjustment Test Strobe-tach Method Engine Throttle Adjustment TestFrequency Counter Method Figure F.7Oscilloscope Method Vibratach Method Engine Throttle Adjustment TestScope Settings Normal Open Circuit Voltage Waveform 115VAC SupplyHigh Idle no Load Output Control AT Maximum Typical DC Weld Output Waveform CC Mode Machine LoadedMachine Loaded to 200 Amps AT 26 VDC Abnormal Open Circuit DC Weld Voltage Waveform Normal Open Circuit DC Weld Voltage Waveform CC Mode Brush Removal and Replacement Procedure Brush Removal and ReplacementFigure F.9 Brush LEADS/BRUSHES Retained with Cable TIE Slip RingsEagle 10,000 Printed Circuit Board Removal Replacement Printed Circuit Board Removal ReplacementTroubleshooting and Repair Eagle 10,000 Output Rectifier Bridge Removal Replacement 43TROUBLESHOOTING and REPAIRF-43Output Rectifier Bridge Removal 44TROUBLESHOOTING and REPAIRF-4445TROUBLESHOOTING and REPAIRF-45 Eagle 10,000 Instructions ENGINE/ROTOR Removal and ReplacementFigure F.12 Component LOCATIONS, ENGINE/ROTOR Removal ENGINE/ROTOR Removal and ReplacementEngine and Rotor Removal Procedure Figure F.13 Engine and Rotor Removed from Stator THRU-BOLT Rotor Removal ProcedureReplacement KIT S20788 Reassembly ProcedureENGINE/ROTOR Removal Retest After Repair Auxiliary Power Receptacle OUTPUT1Engine Output Welder DC OUTPUT1Table of Contents Diagram Section Eagle 10,000 Kohler Electrical DiagramsWiring Diagram Code 11397 M21271 Terminal Schematic Complete Machine Code 11096 L12259Torroid Core located on Schematic Complete Machine Code 11397 L13104Schematic IDLER/FIELD Control P.C. Board L12197

SVM192-A specifications

Lincoln Electric's SVM192-A is a standout model in the sphere of welding machines, renowned for its advanced technology and versatility, making it a preferred choice among welding professionals and industrial applications. This single-phase inverter-based machine balances performance and portability, providing users with a reliable solution for a variety of welding tasks.

One of the key features of the SVM192-A is its capacity to perform multiple welding processes. It supports MIG, TIG, and stick welding, which allows users to switch between different techniques depending on the project requirements. This multi-functionality enhances the machine's utility, making it viable for various applications ranging from home projects to professional fabrication works.

The SVM192-A is equipped with Lincoln Electric’s proprietary technologies, including the advanced inverter technology, which ensures high efficiency and power output while maintaining a compact size. This inverter technology not only improves arc stability but also reduces power consumption and heat generation, making it a more eco-friendly option.

Key characteristics of the SVM192-A include a user-friendly digital display that provides clear settings for amperage, voltage, and other parameters, enabling precise control during welding. The machine also features a robust construction, designed to withstand tough working environments, ensuring longevity and minimal downtime.

Moreover, the SVM192-A incorporates safety features designed to protect the user and the machine, including overcurrent and thermal overload protection. This prioritization of safety ensures a worry-free operation, allowing welders to focus on their craft without the distraction of potential hazards.

Portability is another significant advantage of the SVM192-A. Weighing in at a lightweight design, it is easy to transport, making it ideal for mobile operations or jobs that require moving the equipment frequently.

In summary, the Lincoln Electric SVM192-A embodies versatility, efficiency, and durability, making it an exceptional choice for both novice and experienced welders. Its ability to handle multiple welding processes, combined with advanced technologies and user-friendly features, positions it as a top contender in the welding equipment market, suitable for a wide range of applications in various sectors.