Lincoln Electric SVM192-A service manual Brush Removal and Replacement, Procedure

Page 72

TOC

TOC

F-36

TROUBLESHOOTING AND REPAIR

F-36

BRUSH REMOVAL AND REPLACEMENT (continued)

Return to Section

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master

Return to Master TOC

Return to Master TOC

Return to Master TOC

PROCEDURE

1.Remove the spark plug wires.

2.With a 5/16” nut driver, remove the 6 sheet metal screws from the case top.

3.Remove the rubber gasket (cover seal) from the lift bail.

4.Remove the fuel cap. The rubber gasket for the fill tube with come off with the case top.

5.Remove the case top, then reinstall the fuel cap.

6.WIth the 5/16” nut driver, remove the 5 screws holding the right case side.

7.Remove the right case side by lifting up and out.

8.With a needle nose pliers, gently removeSeethe Figureblue andF.9the. red wires from the brushes.

9.With a 7/16” wrench, remove the brush holder assembly bracket from the stator frame.

10.With a 5/16” open end wrench, remove the two screws that secure the brush holder assembly to the bracket. Slide the brush holder assem- bly out of the bracket.

11.To change the brushes, use a slot head screw driver to pop off the plastic retainer on the back of the brush holder assembly.

12.Remove the old brushes and insert the new ones. One corner of the terminal clip is beveled so that the brush can go in only one way.

13. Snap the plastic retainer back onto the brush holder. The brushes may need some reposi- tioning; wiggle them slightly to help them seat properly on the slip rings.

14. To reinstall the brushes, depress the spring- loaded brushes into the holder and slip a suit-

able non-metallic, fairly stiff retainer through the slots at the top andSeebottomFigureof theF.9.holder. A

cable tie works well;This will hold the brushes up so that you can easily install the holder.

15.Slide the brush holder assembly back into the bracket and, with the 5/16” open end wrench, install the two screws that hold it in place.

16.With the 7/16” wrench, install the brush holder assembly bracket to the stator frame.

17.Slowly remove the non-metallic retainer from the brush holder and let the brushes snap back against the slip rings.

18.With the needle nose pliers, connect the red and the black wires to the appropriate termi- nals on the brushes. The red wire is inboard.

19.Check the wire connections for clearance and tightness.

20.Reinstall the case side, fuel cap, lift bail gas- ket, case top, and spark plug wires.

EAGLE™ 10,000

Image 72
Contents Eagle 10,000 ISAFETYi Eagle 10,000Safety Electric Shock can kill ARC Rays can burnFumes and Gases Can be dangerousPowered equipment Welding CuttingCylinder may explode Sparks can cause fire or If damaged ExplosionPrécautions DE Sûreté Sûreté Pour Soudage a L’ArcMaster Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications Eagle 10,000 K2343-1,K2343-2Height Width Depth Weight Safety Precautions Machine GroundingSpark Arrester TowingVehicle Mounting Fuel Gasoline Fuel onlyFollow vehicle manufacturer’s instructions Do not overfill tank, fuel expansion may cause overflowAdditional Safety Precautions High Altitude Operation Angle of OperationLifting Location / VentilationConnection of Lincoln Electric Wire Feeders Additional Safety PrecautionsInstructions Welder OperationAuxiliary Power 120/240 Volt Dual Voltage ReceptacleDuplex Receptacles Motor StartingElectrical Device USE with the Eagle 10,000 These Devices WithoutAdditional Resistive Type LoadsAuxiliary Power While Welding Simultaneous Welding and PowerStandby Power Connections Connection diagram shown Eagle 10,000Connection of Eagle 10,000 to Premises Wiring Figure A.1Table of Contents Operation Section Engine Switch OperationGeneral Description Welder Controls Function and OperationRange Switch OPERATIONB-3Eagle 10,000 Approximate Fuel Consumption Control DialSTARTING/SHUTDOWN Instructions BREAK-IN PeriodStarting the Engine Stopping the EngineWire Feed Welding Processes Welding ProcessTIG Constant Current Welding ARC GougingTypical Current Ranges 1 for Tungsten ELECTRODES2 Summary of Welding ProcessesTable of Contents Accessories Section Accessories Optional Equipment Field InstalledK1745-1 GAS Cylinder Holder Wire Feed Recommended EquipmentPlasma Cutting Stick TIG WeldingEagle 10,000 Table of Contents Maintenance Section Maintenance Safety PrecautionsEngine OIL Change Engine OIL Refill CapacitiesAIR Cleaner and Other Maintenance OIL Filter ChangeEngine Adjustments Figure D.1 Major Component Locations Eagle 10,000 1TABLE of CONTENTS-THEORY of Operation Section E-1 BATTERY, STARTER, ENGINE, ROTOR, STATOR, and Idler Solenoid Theory of OperationRotor Field Feedback Auxiliary Power Figure E.3 Rotor Field Feedback and Auxiliary PowerWeld WINDING, REACTOR, and Range Switch Output BRIDGE, CHOKE, and Output Terminals1TABLE of Contents Troubleshooting and Repair F-1 2TROUBLESHOOTING and REPAIRF-2 HOW to USE Troubleshooting GuideTroubleshooting and Repair PC Board Troubleshooting ProceduresPerform the Rotor Voltage Test Problems Possible Areas Symptoms Misadjustments Recommended Course of ActionProblems Symptoms Possible Areas MisadjustmentsRotor Voltage2. PTestrform Engine Problems Wiring Charging Circuit Test BridgePerformTestthe. Output Rectifier Eagle 10,000 Rotor Voltage Test Test DescriptionMaterials Needed Test Procedure Remove the case top, then reinstall the fuel capRotor Voltage Test Rotor Resistance Test Rotor Resistance Test Remove the case top, then replace the fuel capTroubleshooting and Repair Eagle 10,000 Auxiliary and Field Winding Test Auxiliary and Field Winding Test To test the 115 VAC windingTo test the 230 VAC winding To test the field winding Eagle 10,000 Output Rectifier Bridge Test Output Rectifier Bridge Test Figure F.4 Location of Output Rectifier LeadsCharging Circuit Test Charging Circuit Test Figure F.5 Location of Voltage RegulatorEngine Throttle Adjustment Test Engine Throttle Adjustment Test Strobe-tach MethodFigure F.7 Frequency Counter MethodEngine Throttle Adjustment Test Oscilloscope Method Vibratach MethodScope Settings Normal Open Circuit Voltage Waveform 115VAC SupplyHigh Idle no Load Output Control AT Maximum Typical DC Weld Output Waveform CC Mode Machine LoadedMachine Loaded to 200 Amps AT 26 VDC Abnormal Open Circuit DC Weld Voltage Waveform Normal Open Circuit DC Weld Voltage Waveform CC Mode Brush Removal and Replacement Brush Removal and Replacement ProcedureSlip Rings Figure F.9 Brush LEADS/BRUSHES Retained with Cable TIEEagle 10,000 Printed Circuit Board Removal Replacement Replacement Printed Circuit Board RemovalTroubleshooting and Repair Eagle 10,000 43TROUBLESHOOTING and REPAIRF-43 Output Rectifier Bridge Removal Replacement44TROUBLESHOOTING and REPAIRF-44 Output Rectifier Bridge Removal45TROUBLESHOOTING and REPAIRF-45 Eagle 10,000 ENGINE/ROTOR Removal and Replacement InstructionsENGINE/ROTOR Removal and Replacement Figure F.12 Component LOCATIONS, ENGINE/ROTOR RemovalEngine and Rotor Removal Procedure Rotor Removal Procedure Figure F.13 Engine and Rotor Removed from Stator THRU-BOLTReplacement KIT S20788 Reassembly ProcedureENGINE/ROTOR Removal Auxiliary Power Receptacle OUTPUT1 Retest After RepairEngine Output Welder DC OUTPUT1Table of Contents Diagram Section Electrical Diagrams Eagle 10,000 KohlerWiring Diagram Code 11397 M21271 Schematic Complete Machine Code 11096 L12259 TerminalSchematic Complete Machine Code 11397 L13104 Torroid Core located onSchematic IDLER/FIELD Control P.C. Board L12197

SVM192-A specifications

Lincoln Electric's SVM192-A is a standout model in the sphere of welding machines, renowned for its advanced technology and versatility, making it a preferred choice among welding professionals and industrial applications. This single-phase inverter-based machine balances performance and portability, providing users with a reliable solution for a variety of welding tasks.

One of the key features of the SVM192-A is its capacity to perform multiple welding processes. It supports MIG, TIG, and stick welding, which allows users to switch between different techniques depending on the project requirements. This multi-functionality enhances the machine's utility, making it viable for various applications ranging from home projects to professional fabrication works.

The SVM192-A is equipped with Lincoln Electric’s proprietary technologies, including the advanced inverter technology, which ensures high efficiency and power output while maintaining a compact size. This inverter technology not only improves arc stability but also reduces power consumption and heat generation, making it a more eco-friendly option.

Key characteristics of the SVM192-A include a user-friendly digital display that provides clear settings for amperage, voltage, and other parameters, enabling precise control during welding. The machine also features a robust construction, designed to withstand tough working environments, ensuring longevity and minimal downtime.

Moreover, the SVM192-A incorporates safety features designed to protect the user and the machine, including overcurrent and thermal overload protection. This prioritization of safety ensures a worry-free operation, allowing welders to focus on their craft without the distraction of potential hazards.

Portability is another significant advantage of the SVM192-A. Weighing in at a lightweight design, it is easy to transport, making it ideal for mobile operations or jobs that require moving the equipment frequently.

In summary, the Lincoln Electric SVM192-A embodies versatility, efficiency, and durability, making it an exceptional choice for both novice and experienced welders. Its ability to handle multiple welding processes, combined with advanced technologies and user-friendly features, positions it as a top contender in the welding equipment market, suitable for a wide range of applications in various sectors.