Emerson 480V user manual Specifications and Technical Data, Appendix a UPS Status Messages

Page 6

11.0 SPECIFICATIONS AND TECHNICAL DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

11.1 Lug Size and Torque Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.2 Cable Lengths: Floor to Connection Point Inside UPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 11.3 Cable size and tightening torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 11.4 Battery Run Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX A - UPS STATUS MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

FIGURES

Figure 1 Cabinet arrangement—Liebert NX units and battery cabinets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 2 Cabinet arrangement—Liebert NX units, battery cabinets and Liebert FPC . . . . . . . . . . . . . . . . 9 Figure 3 Single module block diagram—dual input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 4 Input and output busbars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 5 Monitor board U2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 6 Auxiliary terminal block detail (Monitoring Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7 Input dry contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8 Jumper connection for BCB interface without a battery interface board . . . . . . . . . . . . . . . . . . . 18 Figure 9 Output dry contacts and EPO wiring for firmware before M170 . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10 EPO wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 11 Battery cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 12 Battery cabinet—details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13 Battery tray and supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 14 Load Bus Synchronization cable connection in single module systems. . . . . . . . . . . . . . . . . . . . . 26 Figure 15 Load Bus Synchronization cable connection with multi-module systems . . . . . . . . . . . . . . . . . . . 27 Figure 16 Parallel system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 17 Connecting system parallel control cables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 18 Auxiliary dry contact cables for output breaker in multi-module system . . . . . . . . . . . . . . . . . . . 30 Figure 19 Dry contacts, multiple UPS modules with distribution panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 20 Connecting EPO push button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 21 Dimensional view- front and left side views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 22 Dimensions continued—top and bottom views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 23 Main components—typical unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 24 Cable connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 25 Outline drawing, 33" battery power pack system, single cabinet . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 26 Terminal details, 33" battery power pack system, single cabinet Liebert NX . . . . . . . . . . . . . . . 41 Figure 27 Battery connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 28 Battery cabinet interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 29 Outline drawing, Liebert NX480V, 80-120kVA Type E and E2 parallel cabinet . . . . . . . . . . . . . 44 Figure 30 Outline drawing, Liebert NX480V, 80-120kVA Type E1 parallel cabinet. . . . . . . . . . . . . . . . . . . 45 Figure 31 Main component location drawing Liebert NX 480V, Type E parallel cabinet . . . . . . . . . . . . . . . 46 Figure 32 Main component location drawing Liebert NX 480V, Type E1 parallel cabinet . . . . . . . . . . . . . . 47 Figure 33 Main component location drawing Liebert NX 480V, Type E2 parallel cabinet . . . . . . . . . . . . . . 48 Figure 34 Lineup detail—Parallel Type E connection to Liebert NX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 35 Lineup detail—Parallel Type E1 connection to Liebert NX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 36 Lineup detail—Parallel Type E2 connection to Liebert NX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 37 Line-up detail, bolt together description, 40-120 kVA Liebert NX . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 38 Single module block diagram (dual input configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 39 Overview of control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 40 Detailed view of control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iv

Image 6
Contents Liebert NX UPS Page Table of Contents UPS Specifications OptionsOperator Control and Display Panel Operating Instructions Pop-Up WindowsSpecifications and Technical Data Appendix a UPS Status MessagesTables Page Important Safety Instructions Battery Cabinet Precautions Glossary of Symbols Installation External InspectionsInternal Inspections Preliminary ChecksUPS Location Mechanical Considerations Battery LocationConsiderations in Moving the Liebert NX Special Considerations for Parallel SystemsCable Entry Floor InstallationClearances System CompositionCabinet arrangement-Liebert NX units and battery cabinets UPS Power Cabling Cable RatingLug Size and Torque Requirements UPS Input Configuration Cabling GuidelinesCable Connections Input and output busbarsSafety Ground Protective DevicesUPS Rectifier and Bypass Input Supply Common Input Connections Cabling ProcedureOutput System Connections-Ensure Correct Phase Rotation Dual Input ConnectionsFrequency Converter Mode Monitor Board FeaturesControl Cables Dry Contacts Input Dry Contacts Maintenance Bypass Cabinet InterfaceMaintenance bypass cabinet interface Input dry contacts atBCB Control Interface BCB control interfaceOutput Dry Contacts Inverter mode relay centerMain input fault relay center Output dry contact relaysEPO Input-Optional EPO input contact relaysIndicates Pin Safety IntroductionExternal Battery Cabinet Installation Battery CabinetsConnecting the Batteries Installation ConsiderationsInsulated Post Tray Handle For Cabling Connecting the Battery Cabinet to the UPS Non-Standard BatteriesBCB Shunt Trip This power must be UPS protected Alber Monitoring System-OptionalPerformance Requirements LBS Cable and SettingsLoad Bus Synchronization LBS CableConfiguring Parallel System Operation Features of Parallel SystemGeneral Installing Parallel System Operating Principles Redundancy ParallelingOperation Modes Summary Conditions for Parallel System Cabinet InstallationPower Cables Preliminary ChecksInterconnecting Auxiliary Dry Contact CablesCables Q1Ext Q2Ext QBypTo Load Normally Open EPO Normally Closed EPOUPS mechanical characteristics UPS Mechanical CharacteristicsEnvironmental characteristics Conformity and StandardsUPS Electrical Characteristics UPS terminalRated Power kVA 100 120 Rectifier input powerLiebert approved replacement batteries Battery Manufacturer Models SuppliedDC Intermediate Circuit Inverter OutputBypass Input Left Side GND Left Side View Front View Max. Door Swing U3819205 Batt Ext530628 Pg , Rev External Battery Cabinet Battery BreakerAuxiliary Contacts Top Top Front Right Side Front Rear SystemRear FRONTOutput Run From Conductors Ph A, B, C UPS Outputs Ph A, B, C System InputPh A, B, C UPS Inputs AC OutputUtility UPS #1-UPS #4 Module AC Ph A, B, C UPS Inputs Ph A, B, C System OutputsGround UPS Isometric View U3819301Single module block diagram dual input configuration General DescriptionBypass Mode Normal ModeBattery Mode Bypass SuppliesMaintenance Mode Parallel Redundancy Mode System ExpansionOperator Control Panel Display Panel LayoutMimic indicators Control buttons Navigation keys Detailed view of control panelMimic Display Indicators Mimic display status indicatorsControl Buttons Control buttonsAudible Buzzer LCD OverviewIcons for navigation keys Navigation KeysUPS System Information Description of items in UPS system windowLCD Menus and Data Items Mains Descriptions of UPS menus and data window itemsMenu Type Item Type Explanation InputStart/stop Battery Language SelectionTests Current Date and Time Set date and timeUPS Status Messages Current status and history log recordsDefault Screen Types of LCD ScreensOpening Display UPS Help Screen Screen Saver WindowPop-Up Windows Liebert NX Operating Modes UPS operating modesCircuit Breakers Circuit breakersStartup Procedure Indicator StateUPS Startup Switch from Normal Mode to Bypass Mode Switch from Bypass Mode to Normal ModeMaintenance Bypass Procedure and Powering Down the UPS Auto Restart Emergency Shutdown With EPOBattery Undervoltage Pre-Warning Battery ProtectionMulti-Module System Procedures Battery End-of-Discharge EOD ProtectionTie breaker Inserting One Module into a Multi-Module System LED Function StatusShutdown Procedure-Complete UPS and Load Shutdown Commissioning a Parallel SystemParallel System Start Up Analog Input Interface Power OutputCommunication and Other User Terminals Liebert IntelliSlot CommunicationComments See 10.1.5 ConfiguringLiebert NX communication options Baud RatesConfiguring Baud Rates Liebert IntelliSlot Web card display Relay Card Relay Card pin configurationRelay card jumper configuration Pin Function OperationMultiPort 4 Card AssignmentPin Description Remote Alarm Monitor LBS Mode-Load Bus SynchronizationReplacing Dust Filters Lug Size and Torque Requirements Torque specificationsBattery torque rating Cable Lengths Floor to Connection Point Inside UPSDistance to connection points on the Liebert NX UPS Parallel system current tableExternal cabinet dimensions, including side panels Cable size and tightening torquesLead/Lag ratings 250 10 N*m Battery Run Times Estimated battery run time, minutesServices at 800-543-2378 for assistance UPS status messagesEvent Message Description / Suggested Action if any Bypass voltage exceeds the limit High ambient air temperatureBypass voltage is beyond the normal range Software according to the customer’s agreementInverter STS Fail Error can also leads to the alarmAlarm if applicable Condition is removedEmergency Power Off EPOUPS status messages UPS Status Messages Page Ti n Ne tIti That
Related manuals
Manual 112 pages 61.01 Kb

480V specifications

The Emerson 480V power systems play a critical role in modern industrial applications, providing reliable and efficient power distribution. These systems are designed for facilities that require robust performance and operational efficiency while adhering to safety regulations. With voltage ratings at 480V, they cater primarily to industries such as manufacturing, data centers, and commercial buildings.

One of the main features of the Emerson 480V systems is their scalability. These systems can be easily adapted and expanded as operational demands grow, thereby reducing initial investment costs and providing a flexible solution for evolving business needs. This ability to scale is crucial in a fast-paced environment where demands can change rapidly.

The Emerson 480V systems also incorporate advanced technologies for improved performance and safety. One key technology is the use of smart grid solutions. This enables real-time monitoring, diagnostics, and control, allowing facility managers to optimize energy consumption and reduce operational costs. Furthermore, these systems often include integrated protection devices that enhance safety measures by minimizing the risk of electrical faults, overloads, or short circuits.

Energy efficiency is another characteristic that distinguishes Emerson 480V systems from traditional alternatives. With advanced power management features, these systems effectively reduce energy waste and lower electricity bills. Emerson’s commitment to sustainability is evident in its designs, which aim to minimize environmental impact through energy-efficient technologies.

The build quality of Emerson 480V systems is also noteworthy. They are designed to withstand harsh industrial environments and are constructed with high-grade materials that promote longevity and reliability. The modular design allows for easy maintenance and repair, which further extends the lifespan of the system.

Additionally, Emerson 480V systems are equipped with user-friendly interfaces that facilitate ease of operation. This ensures that operators can efficiently manage and control power distribution without extensive training. The combination of performance, scalability, safety features, and user-centric design makes Emerson 480V systems an ideal choice for businesses looking to enhance their electrical infrastructure.

In summary, Emerson 480V power systems are a leading solution for industrial power distribution, characterized by their scalability, smart technology integration, energy efficiency, robust build quality, and user-friendly operation. These attributes make them a valuable investment for any organization aiming to improve its electrical management and operational performance.