IBM MiEM78P468L, MiEM78P468N Power-on Considerations, RC Oscillator Mode with Internal Capacitor

Page 38

EM78P468N/EM78P468L

8-Bit Microcontroller

6.6.4RC Oscillator Mode with Internal Capacitor

If both precision and cost are taken into consideration, this LSI also offers a special oscillation mode, which has an on-chip internal capacitor and an external resistor connected to VDD. The internal capacitor functions as temperature compensator. In order to obtain more accurate frequency, a precise resistor is recommended.

R-OSCI or Xin

EM78P468N

VDD

Rext

Fig. 6-9 Circuit for Internal C Oscillator Mode

Table 6

RC Oscillator Frequencies

 

 

 

 

 

 

 

 

Pin

 

 

Rext

 

Average Fosc 5V, 25°C

Average Fosc 3V, 25°C

 

 

 

51k

 

2.2221 MHz

2.1972 MHz

R-OSCI

 

 

100k

 

1.1345 MHz

1.1203 MHz

 

 

 

300k

 

381.36kHz

374.77kHz

Xin

 

 

2.2M

 

32.768kHz

32.768kHz

 

 

 

 

 

 

 

Note: Measured from QFP packages with frequency drift of about ±30%.

Values are provided for design reference only.

6.7 Power-on Considerations

Any microcontroller (as with this LSI) is not warranted to start operating properly before the power supply stabilizes in a steady state. This LSI has an on-chip Power-on Reset (POR) with detection level range as shown on the table below. The circuitry eliminates the extra external reset circuit but will work well only if the VDD rises quickly enough (50 ms or less). However, under critical applications, extra devices are still required to assist in solving power-on problems.

Power-on voltage detector provided

IC

Voltage Range

EM78P468N

1.9V to 2.1V

 

 

EM78P468L

1.6V to 1.8V

 

 

32

Product Specification (V1.5) 02.15.2007

(This specification is subject to change without further notice)

Image 38
Contents EM78P468N/L Elan Microelectronics Corporation Contents Infrared Remote Control Application/PWM Waveform Generate Appendix Doc. Version Revision Description DateContents Product Specification V1.5 Bit Microcontroller FeaturesGeneral Description Pin Assignment Pin QFP Pin LqfpBlock Diagram System Block DiagramPin Description for Package of QFP64 and LQFP64 Symbol Pin No Type FunctionPin Description Pin Description for Package of QFP44 and LQFP44 SEG11~SEG14Operational Registers 2 R1/TCC Timer Clock CounterFunction Description 1 R0/IAR Indirect Addressing RegisterOn-ChipProgrammemory Bit 2 Z Zero flag 4 R3/SR Status RegisterBits 6 ~ 5 PS1 ~ 0 Page select bits Bit 0 C Carry flag7 R6/Port 6 Port 6 I/O Data Register 5 R4/RSR RAM Select Register6 R5/Port 5 Port 5 I/O Data and Page of Register Select 8 R7/Port 7 Port 7 I/O Data Register10 R9/LCDCR LCD Control Register Bit 4 Lcden LCD enable bit9 R8/Port 8 Port 8 I/O Data Register Lcdtype = 0 a type waveform Lcdtype = 1 B type waveformRB/LCDDB LCD Data Buffer RC/CNTER Counter Enable Register11 RA/LCDADDR LCD Address Main clock 14 RD/SBPCR System, Booster and PLL Control RegisterAddress 0Dh Example Fs=32.768KAddress 0Eh 15 RE/IRCR IR and Port 5 Setting Control RegisterBit Microcontroller CPU Operation Mode Address 0Fh 16 RF/ISR Interrupt Status RegisterAddress 10h~3Fh R10~R3F General Purpose Register Address 05h, Bit 0 of R5 = Special Purpose RegistersAccumulator 5 IOC80/P8CR Port 8 I/O Control Register 3 IOC60/P6CR Port 6 I/O Control Register4 IOC70/P7CR Port 7 I/O Control Register 6 IOC90/RAMADDR 128 Bytes RAM AddressIOCD0/HPWTPR High-Pulse Width Timer Preset Register IOCB0/CNT1PR Counter 1 Preset RegisterIOCC0/CNT2PR Counter 2 Preset Register Bits 6, 5, 4 Not used IOCE0/LPWTPR Low-Pulse Width Timer Preset RegisterIOCF0/IMR Interrupt Mask Register Bits 3~0 PSRE, TCCP2 ~ TCCP0 TCC prescaler bits 14 IOC71/TCCCR TCC Control RegisterBit 7 Intedge TCC RateBits 7 ~ 4 Not used 15 IOC81/WDTCR WDT Control Register16 IOC91/CNT12CR Counters 1, 2 Control Register WDT RateHigh-pulse Width Timer Scale IOCA1/HLPWTCR High/Low Pulse Width Timer Control RegisterLow-pulse Width Timer Scale Counter 1 ScaleIOCD1/P8PH Port 8 Pull High Control Register IOCB1/P6PH Port 6 Pull-high Control RegisterIOCC1/P6OD Port 6 Open Drain Control Register IOCE1/P6PL Port 6 Pull Low Control RegisterTCC and WDT Prescaler MUXBit Microcontroller WDT Setting Flowchart TCC Setting FlowchartReset and Wake-up I/O PortsAddress Name Reset Type Bit Bit Microcontroller Summary of Registers Initialized ValuesINT Psre TCCP2 TCCP1 TCCP0 Name Reset Type Bit Wake-up Signal Sleep Mode Idle Mode Green Mode Normal Mode Oscillator Modes Phase Lock Loop PLL ModeOscillator Oscillator Source Oscillator Type Frequency C1 pF C2 pF Crystal Oscillator/Ceramic Resonators CrystalMain clock Example Fs=32.768KHz RC Oscillator Frequencies Power-on ConsiderationsRC Oscillator Mode with Internal Capacitor Pin Rext Average Fosc 5V, 25 C Average Fosc 3V, 25 CExternal Power-on Reset Circuit Residue-Voltage ProtectionInterrupt 13 Interrupt Back-upBits 6 ~ 5 DS1 ~ DS0 LCD duty select LCD Driver1 R9/LCDCR LCD Control Register Bits 7 ~ 5 Not used, fixed to 2 RA/LCDADDR LCD Address3 RB/LCDDB LCD Data Buffer Bits 4 ~ 0 LCDA4 ~ LCDA0 LCD RAM address4 RD/SBPCR System, Booster and PLL Control Registers Bit 2 ~ 1 BF1 ~ 0 LCD booster frequency select bitsExternal circuit for 1/2 Bias Boosting circuits connection for LCD voltageExternal circuit for 1/3 Bias 16 LCD Waveform for 1/2 Bias, 1/2 Duty 18 LCD Waveform for 1/3 Bias, 1/3 Duty Infrared Remote Control Application/PWM Waveform Generate ⋅ 1 + decimal C ounter Preset Value Iocc 0 ⋅ prescaler21 LGP=0, Irout Pin Output Waveform 23 LGP=0, Irout Pin Output Waveform Bit Microcontroller IR/PWM Function Enable Flowchart IR applicationWord Code OptionsBits 12 ~ 10 Not used Bits12~10 WordPR1PR0Protect Instruction SetBits 2~0 PR2~PR0 Protect Bit Binary Instruction Hex Mnemonic Operation Status ConventionBinary Instruction Hex Mnemonic Operation Status Affected JZATiming Diagram AC Test Input/Output WaveformItems Symbol Condition Rating Min Max Unit Absolute Maximum RatingsSymbol Parameter Condition Min Typ Max Unit Electrical CharacteristicDC Electrical Characteristics Ta= -40 C ~85 C, VDD= 5.0V, GND=Ta= -40C ~85 C, VDD= 3.0V, GND= Ta=- 40C ~ 85 C, VDD=5V±5%, GND=0V AC Electrical CharacteristicsSymbol Parameter Conditions Min Typ Max Unit Device Characteristic Vih/Vil /RESET pins with schmitt inverterVih/Vil Port 7, Port 8 All Input pins with schmitt inverter P5.7 Voh/Ioh VDD=5V, IROCS=1 P5.7 Voh/Ioh VDD=3V, IROCS=1 80 P5.7 Voh/Ioh VDD=5V, IROCS=0 Max Typ +25 Setup time from Power on Reset = 51 K 13 Typical Eric OSC Frequency vs. Temperature Xin Pin VDD=5V Typical ICC2 vs. Temerature Typical ICC1 vs. Temerature Typical ISB vs. Temerature 22 Operating Voltage under Temperature Range of 0C to 70C Application Circuit EM78P468NxS/xJ Package TypeName Package Type Pin Count Package Size Package Information QFPLqfp 900 100 BSC 00 REFMin Normal Max 30TYP 15TYP Program Pin Name IC Pin Name QFP-64 QFP-44 Wiring diagram is for Elan DwtrEM78P468N/L Program Pin List ICE 468XA Oscillator Circuit JP Main oscillator Crystal mode, Sub oscillator Crystal modeMain oscillator PLL mode, Sub oscillator Crystal mode Main oscillator RC mode, Sub oscillator CrystalBit Microcontroller ICE 468XA Output Pin Assignment JP VLCD3 GND OscoTest Category Test Conditions Quality Assurance and ReliabilityAddress Trap Detect Contents III

MiEM78P468L, MiEM78P468N specifications

The IBM MiEM78P468N and MiEM78P468L are advanced integrated circuit solutions that cater primarily to the needs of enterprise-level computing systems. These microprocessors are integral in handling a variety of complex tasks, thereby empowering businesses with the efficiency and speed required in today's fast-paced digital environment.

Both models utilize the cutting-edge 78P architecture, which provides impressive performance capabilities. The MiEM78P468N operates at a clock speed of up to 2.2 GHz, while the MiEM78P468L offers a lower clock speed optimized for energy efficiency. This distinction makes the N version ideal for high-performance applications, whereas the L version appeals to scenarios where power consumption is a critical consideration.

A key characteristic of both models is their multi-core architecture, supporting up to four cores. This feature allows for enhanced parallel processing, enabling the handling of multiple tasks simultaneously—a vital requirement for data-intensive applications. Moreover, the inclusion of advanced cache memory arrangements enhances data retrieval speeds significantly, ensuring that applications run smoothly without performance bottlenecks.

These processors also employ cutting-edge thermal management technologies. The dynamic voltage and frequency scaling (DVFS) capabilities ensure that performance can be adjusted in real-time based on workload requirements, helping to minimize energy consumption. This is particularly beneficial in maintaining optimal operating temperatures and prolonging the lifespan of the hardware.

Another notable feature is support for advanced security protocols. Both models incorporate hardware-based security technologies that safeguard data integrity and protect against unauthorized access. This is becoming increasingly important in today's cybersecurity landscape where businesses must prioritize protecting sensitive information.

Additionally, the IBM MiEM78P468N and MiEM78P468L processors are compatible with a wide range of operating systems, facilitating seamless integration into various IT environments. Their robust architecture supports extensive peripheral interconnect protocols, enhancing expandability and connectivity options.

In summary, the IBM MiEM78P468N and MiEM78P468L processors stand out for their performance capabilities, energy efficiency, advanced security features, and versatility. They are well-suited for organizations looking to enhance their computing power while maintaining a balance between performance and power consumption. These microprocessors are instrumental in driving innovation and efficiency in enterprise computing.