GE ZBTSD manual ATS Testing, Standard Transition, Delayed Transition

Page 21

Testing

NOTICE

A periodic test of the transfer switch under load conditions is recommended to insure proper operation.

(See National Electric Code articles 700 and 701)

ATS Testing

Start generator and verify proper voltage, frequency and phase sequence (match to Source 1). Shut down gen set and place in Auto. Complete the visual inspection of the transfer switch, and close the cabinet door.

Initiate the test by pressing the TEST button on the LCD keypad. The controller will then prompt for your access code. After entering the code, three test options will appear— XFR LOAD, FAST TEST and NO XFR (See Figure 12).

XFR LOAD test starts the generator and using the current timer settings, transfers the load to Source 2.

FAST TEST test presets timer values to a maximum 30 seconds during the test. After completion of the test, all timers are reset to their original values. (T3, W3, DT and DW remain)

NO XFR test starts the generator but does not transfer the load to the Source 2.

Press and hold the desired test option button until the switch transfers to Source 2 (load test) or until the generator has been run for the desired amount of time (no load test). Releasing the test button before W timer timeout will abort the test (Exception: when the transfer commit option, is configured “ON”).

To test lamps, press TEST then scroll through MORE, then press LAMP TEST. To cancel LAMP TEST press MORE.

Standard Transition

When the test is initiated, the controller initiates the Time Delay Source 2 Start Timer (Engine Start Timer "P") cycle. A manual CANCEL button is provided to cancel the test if desired. Upon completion of the (P) time delay, an Engine start Signal is sent to Source 2. When Source 2 voltage and frequency reach the preset "Restore" Values, the time delay to Source 2 Timer (W) begins its timing cycle to ensure voltage and frequency stabilization before transfer. A manual pushbutton BYPASS is provided to bypass the "W" time delay if desired. After the (W) time delay, the MX con- troller initiates a transfer signal through the SCR-E to operate the main transfer operator. The load is now transferred to Source 2 line. The transfer switch is mechanically locked. SN limit switch awaits the next operation to Source 1.

Restoration of Source 1 Power:

Deactivating the test switch initiates re-transfer to Source 1 sequence. The delay to Source 1 Timer (T) begins its timing cycle to ensure voltage and frequency stabilization before retransfer. A manual pushbutton BYPASS is provided to bypass the "T" time delay if desired. After the (T) time delay, the MX controller initiates a transfer signal through the SCR-N to operate the main transfer operator. The load is now transferred to Source 1 line. The transfer switch is mechanically locked. SE limit switch awaits the next operation to Source 2.

S Y S T E M T E S T

FA S T X F R N O

M O R E T E S T L O A D X F R

Figure 12

Immediately after re-transfer, the S2 Stop Delay Timer (Delay to Engine Stop "U") begins its cycle to allow Source 2 Engine to run unloaded. A manual pushbutton BYPASS is provided to bypass the "U" time delay if desired. Upon completion of the

(U) timing cycle, the controller sends an Engine stop signal.

Delayed Transition

Source 1 Power Failure:

When the test is initiated, the controller initiates the Time Delay Source 2 Start (Engine Start Timer "P") cycle. A manual CANCEL button is provided to cancel the test if desired Upon completion of the (P) time delay, an Engine start Signal is sent to Source 2. When Source 2 voltage and frequency reach the preset "Restore" values, the time delay to open Source 1 timer

(W)begins its timing cycle to ensure voltage and frequency sta- bilization before re-transfer. A manual pushbutton BYPASS is provided to bypass the "W" time delay if desired. After the (W) time delay, the MX controller initiates a transfer signal through the SCR-NO to operate the main transfer operator. The load is now transferred to the Open position. The time delay to Source 2 timer (DW) begins its timing cycle. After the (DW) time delay, the MX controller initiates a transfer signal through the SCR-E to operate the main transfer operator. The load is now transferred to Source 2 line. The transfer switch is mechanically locked. SN limit switch awaits the next operation to Source 1.

Restoration of Source 1 Power:

Deactivating the test switch initiates re-transfer to Source 1sequence. The delay to open Source 2 Timer (T) begins its timing cycle to ensure voltage and frequency stabilization before retransfer. A manual pushbutton BYPASS is provided to bypass the "T" time delay if desired. After the (T) time delay, the MX controller initiates a transfer signal through the SCR-EO to operate the main transfer operator. The load is now transferred to the Open position. The time delay to Source 1 timer (DT) begins its timing cycle. After the (DT) time delay, the MX controller initiates a transfer signal through the SCR-N to operate the main transfer operator. The load is now transferred to Source 1 line. The transfer switch is mechanically locked. SE limit switch awaits the next operation to Source 2.

Immediately after re-transfer, the S2 Stop Delay Timer (Delay to Engine Stop "U") begins its cycle to allow Source 2 Engine to run unloaded. A manual pushbutton BYPASS is provided to bypass the "U" time delay if desired. Upon completion of the

(U) timing cycle, the controller sends an Engine stop signal.

GE Zenith Controls

ZBTS / ZBTSD Operation and Maintenance Manual (71R-4000A)

19

Image 21
Contents GE Zenith Controls Authorized Service Table of ContentsIntroduction Equipment Inspection and Storage SafetyFinal Equipment Inspection MountingInstallation Power ConnectionsEngine Start Control Connections IInitial Energization Installation cont’dR E T E S T Initial Energization cont’dInstallation cont’d Entelli-Switch 250 Controller Entelli-Switch 250 ControllerLCD & Keypad Entelli-Switch 250 Controller cont’dStandard 3-Phase Sensing on 3 and 4 Pole Units Source User Setting for Voltage & FrequencyStds Exes Cons Sens Spes Psgs Accessory Group PackagesAccessory Definitions A62Calibrate Accessory Definitions cont’d S12P R50S13P S14UMD How to Set the System ClockLoad / No-Load CDT One Event Timer ExerciserLoad / No-Load Clock Exerciser CDP Clock ExerciserTurn options on or OFF via keypad through the CFG menu Entelli-Switch 250 User Setup CFG MenuChange adjustable values through the SET menu Entelli-Switch 250 User Setup SET MenuView System Data Entelli-Switch 250 User Setup System InfoATS Testing TestingDelayed Transition Standard TransitionSequence of Operation Timer Designations as they appear in the SET menuBypass-Isolation Operation Sequence of Operation cont’dAutomatic 100-400 AMP600-1200 AMP 1600-4000 AMP Standard and Delay Transition Controls Power Supply CPSControls Power Supply CPS cont’d Standard Transition CPS SchematicDelayed Transition CPS Schematic General Troubleshooting Troubleshooting and DiagnosticsInspection and Cleaning Maintenance and TestingTesting ServicingPage GE Zenith Controls

ZBTS, ZBTSD specifications

General Electric (GE) has established itself as a leader in the field of industrial automation and control systems, with its ZBTSD and ZBTS series representing some of the most advanced technology available. These systems are engineered to enhance performance, efficiency, and reliability in various industrial applications.

The ZBTSD, or Zero-Based Time Series Data, is designed to optimize data storage and retrieval processes. One of its main features is its ability to provide real-time monitoring and analytics of dynamic processes. This capability is crucial for industries that require immediate insights into their operations, helping to minimize downtime and enhance decision-making. The ZBTSD utilizes advanced machine learning algorithms to identify trends and patterns, enabling predictive maintenance that can significantly reduce operational costs.

On the other hand, the ZBTS, or Zero-Based Time Series Solutions, focuses on delivering comprehensive solutions for time series data management. This system is adept at handling vast amounts of data generated by industrial equipment, ensuring that organizations can efficiently process and analyze this information. Key characteristics of ZBTS include scalability, which allows companies to expand their systems as their data grows, and flexibility, permitting integration with various data sources.

One notable technology employed in both ZBTSD and ZBTS is cloud computing. By leveraging the cloud, these systems offer enhanced data accessibility and collaboration capabilities. Users can access critical data anytime, anywhere, facilitating timely responses to operational challenges.

Another significant feature is robust cybersecurity measures. With the increasing number of cyber threats in industrial environments, GE has prioritized security in the ZBTSD and ZBTS systems. These solutions are equipped with advanced encryption protocols and user authentication mechanisms to protect sensitive data from unauthorized access.

The user interface of both systems is designed to be intuitive, allowing operators to interact with the systems efficiently. Customizable dashboards provide visual representations of key performance indicators, making it easier for users to comprehend complex data at a glance.

In summary, GE's ZBTSD and ZBTS systems exemplify the integration of cutting-edge technology in industrial automation. Their emphasis on real-time data analytics, scalability, cybersecurity, and user-friendly design positions them as invaluable tools for organizations seeking to enhance operational efficiency and decision-making. As industries continue to evolve, these systems will play a pivotal role in shaping the future of industrial automation and data management.