Digi BL1800 user manual Typical DA1 Voltages for Various Duty Cycles

Page 29

either a 0% or a 100% duty cycle. The duty cycle is programmed as the high-time count of 1024 total counts of the Rabbit 2000’s timer B. Thus, 256 counts would be 25% of 1024 counts, and corresponds to a 25% duty cycle.

Table 2 lists typical DA1 voltages measured for various duty cycle values with a load larger than 1 MΩ.

Table 2. Typical DA1 Voltages for Various Duty Cycles

Duty Cycle

Voltage

Programmed Count

(%)

(V)

 

 

 

 

0

0.002

0–122

 

 

 

12

0.620

123

 

 

 

25

1.242

256

 

 

 

50

2.483

512

 

 

 

72

3.567

742

 

 

 

100

3.567

743–1024

 

 

 

It is important to remember that the DA1 output voltage will not be realized instanta- neously after programming in a value. There is a settling time because of the RC time con- stant (R24 × C22), which is 10 ms. For example, the voltage at any given time is

V = V

P

– (V

P

– V

DA1

)e(-t/RC)

(EQ 1)

 

 

 

 

 

where V is the voltage at time t, VP is the programmed voltage, VDA1 is the last DA1 out- put voltage from the D/A converter, and RC is the time constant (10 ms). The settling will be within 99.326% (or within about 21 mV for a 3 V change in voltage) after five time constants, or 50 ms. Six time constants, 60 ms, will allow settling to within 99.75% (or to within about 8 mV for a 3 V change in voltage). Seven time constants, 70 ms, will allow settling to within 99.91% (or to within about 3 mV for a 3 V change in voltage).

An LM324 op amp, which can comfortably source 10 mA throughout the D/A converter range, drives the D/A converter output. If the output voltage is above 1 V, the D/A con- verter can comfortably sink 10 mA. Below 1 V, the D/A converter can only sink a maxi- mum of 100 µA.

To summarize, DA1 is provided uncalibrated, can be programmed with a resolution of

5 mV and a peak-to-peak ripple less than 20 mV over the range from 0.7 V to 3.5 V and 0 V. The settling time to within 21 mV is 50 ms.

User’s Manual

25

Image 29
Contents Programmable Single-Board Computer Jackrabbit BL1800Digi International Inc TrademarksTable of Contents Index Schematics Introduction FeaturesDevelopment and Evaluation Tools Jackrabbit FeaturesOnline Documentation How to Use This ManualAdditional Product Information Emissions CE ComplianceImmunity Interfacing the Jackrabbit to Other Devices SafetyDesign Guidelines General Jackrabbit BL1800 Getting Started Development Kit ContentsDevelopment Hardware Connections Attach Jackrabbit to Prototyping Board BoardAssemble AC Adapter Connect Programming CableConnect Power Installing Dynamic C Run a Sample Program TroubleshootingTechnical Support Where Do I Go From Here?Real-Time Clock BL1800 SubsystemsHeaders Jackrabbit PinoutsDigital Inputs Digital Inputs/OutputsHV3 Sourcing Output Digital OutputsConfigurable High-Current Output Changing HV3 to a Sinking Output Bidirectional I/OA/D Converter Schematic Diagram of A/D Converter Jackrabbit BL1800 D/A Converters Schematic Diagram of D/A Converters1 DA1 V ⋅ 1 e RCTypical DA1 Voltages for Various Duty Cycles Typical DA0 Voltages for Various Duty Cycles 2 DA0User’s Manual 2 RS-485 Serial Communication1 RS-232 Ground recommended 485 R16 Programming PortUser’s Manual Programming Cable Changing Between Program Mode and Run ModeFlash Eprom MemorySram Clock Doubler Other HardwareExternal Interrupts Spectrum Spreader Jackrabbit BL1800 An Overview of Dynamic C Software ReferenceJackrabbit BL1800 Jackrabbit Sample Programs Sample ProgramsSample Program DEMOJR1.C DEMOJR1.CWatch Expression Break Point Single-SteppingWatching Variables Dynamically Summary of FeaturesEditing the Program User’s Manual Other Sample Programs Illustrating Digital I/O R/W pin and DB0-DB3 on 3 RS-232 Serial Communication Sample Programs 4 RS-485 Serial Communication Sample Program Cooperative Multitasking Int vswitch Advantages of Cooperative Multitasking 1 I/O Drivers Jackrabbit Function CallsVoid digOutint channel, int value Void anaOutint channel, int value Void anaInint channel, int *value Serial Communication Drivers Add-On Modules Upgrading Dynamic CPatches and Bug Fixes Appendix A. Specifications Figure A-1shows the mechanical dimensions for the Jackrabbit Electrical and Mechanical SpecificationsTable A-1. Jackrabbit Board Specifications Exclusion Zones Exclusion ZoneFigure A-3. User Board Footprint for Jackrabbit Figure A-4. Location of Jackrabbit Configurable Positions Jumper ConfigurationsTable A-2. Jackrabbit Jumper Configurations Conformally coated area Conformal CoatingJackrabbit Use of Rabbit 2000 Parallel PortsTable A-3. Jackrabbit Pinout Configurations PD0 PD1 Jackrabbit BL1800 Appendix B. Prototyping Board Prototyping Board Overview Jackrabbit Connectors User LEDs BuzzerPrototyping Board Features Top Side Mechanical Dimensions and LayoutTop Side Using the Prototyping BoardRelay Demonstration BoardExisting Top Side Prototyping BoardPE0 VCC HV0 SM1 SM0 HV2 Stat Jackrabbit BL1800 Power Supplies Appendix C. Power ManagementDcin Current mA 950 mA·h = 5.4 years 20 µA Batteries and External Battery ConnectionsFigure C-5shows the Jackrabbit battery backup circuitry Battery Backup CircuitReset Generator Power to Vram SwitchChip Select Circuit Figure C-7shows a schematic of the chip select circuitJackrabbit BL1800 SMODE0 SMODE1 IndexRABDB01.C RABDB02.C Schematics