Digi BL1800 user manual 3 RS-232 Serial Communication Sample Programs

Page 50

4.2.3 RS-232 Serial Communication Sample Programs

JR_FLOWCONTROL.C—This program demonstrates hardware flow control by config- uring Serial Port C (PC3/PC2) for CTS/RTS with serial data coming from TxB at 115,200 bps. One character at a time is received and is displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie PC4 and PC5 (TxB and RxB) together at header J1, and you will also tie PC2 and PC3 (TxC and RxC) together as shown in the diagram.

A repeating triangular pattern should print out in the STDIO window. The program will periodically switch flow control on or off to demonstrate the effect of no flow control.

GND

TxC RxB

RxC TxB

J1

Refer to the serBflowcontrolOn() function call in the Dynamic C Function Refer- ence Manual for a general description on how to set up flow control lines.

JR_PARITY.C—This program demonstrates the use of parity modes by repeatedly sending byte values 0–127 from Serial Port B to Serial Port C. The program will switch between generating parity or not on Serial Port B. Serial Port C will always be checking parity, so parity errors should occur during every other sequence.

GND

TxC RxB

RxC TxB

J1

To set up the Prototyping Board, you will need to tie PC4 and PC3 (TxB and RxC) together at header J1 as shown in the diagram.

The Dynamic C STDIO window will display the error sequence.

46

Jackrabbit (BL1800)

Image 50
Contents Jackrabbit BL1800 Programmable Single-Board ComputerTrademarks Digi International IncTable of Contents Index Schematics Features IntroductionJackrabbit Features Development and Evaluation ToolsOnline Documentation How to Use This ManualAdditional Product Information Emissions CE ComplianceImmunity Interfacing the Jackrabbit to Other Devices SafetyDesign Guidelines General Jackrabbit BL1800 Development Kit Contents Getting StartedDevelopment Hardware Connections Board Attach Jackrabbit to Prototyping BoardConnect Programming Cable Assemble AC AdapterConnect Power Installing Dynamic C Troubleshooting Run a Sample ProgramTechnical Support Where Do I Go From Here?Real-Time Clock Subsystems BL1800Jackrabbit Pinouts HeadersDigital Inputs/Outputs Digital InputsDigital Outputs HV3 Sourcing OutputConfigurable High-Current Output Bidirectional I/O Changing HV3 to a Sinking OutputSchematic Diagram of A/D Converter A/D ConverterJackrabbit BL1800 Schematic Diagram of D/A Converters D/A ConvertersV ⋅ 1 e RC 1 DA1Typical DA1 Voltages for Various Duty Cycles 2 DA0 Typical DA0 Voltages for Various Duty CyclesUser’s Manual 2 RS-485 Serial Communication1 RS-232 Ground recommended Programming Port 485 R16User’s Manual Changing Between Program Mode and Run Mode Programming CableFlash Eprom MemorySram Clock Doubler Other HardwareExternal Interrupts Spectrum Spreader Jackrabbit BL1800 Software Reference An Overview of Dynamic CJackrabbit BL1800 Sample Programs Jackrabbit Sample ProgramsDEMOJR1.C Sample Program DEMOJR1.CSingle-Stepping Watch Expression Break PointWatching Variables Dynamically Summary of FeaturesEditing the Program User’s Manual Other Sample Programs Illustrating Digital I/O R/W pin and DB0-DB3 on 3 RS-232 Serial Communication Sample Programs 4 RS-485 Serial Communication Sample Program Cooperative Multitasking Int vswitch Advantages of Cooperative Multitasking Jackrabbit Function Calls 1 I/O DriversVoid digOutint channel, int value Void anaOutint channel, int value Void anaInint channel, int *value Serial Communication Drivers Add-On Modules Upgrading Dynamic CPatches and Bug Fixes Appendix A. Specifications Electrical and Mechanical Specifications Figure A-1shows the mechanical dimensions for the JackrabbitTable A-1. Jackrabbit Board Specifications Exclusion Zone Exclusion ZonesFigure A-3. User Board Footprint for Jackrabbit Jumper Configurations Figure A-4. Location of Jackrabbit Configurable PositionsTable A-2. Jackrabbit Jumper Configurations Conformal Coating Conformally coated areaUse of Rabbit 2000 Parallel Ports JackrabbitTable A-3. Jackrabbit Pinout Configurations PD0 PD1 Jackrabbit BL1800 Appendix B. Prototyping Board Jackrabbit Connectors User LEDs Buzzer Prototyping Board OverviewPrototyping Board Features Mechanical Dimensions and Layout Top SideUsing the Prototyping Board Top SideDemonstration Board RelayExisting Prototyping Board Top SidePE0 VCC HV0 SM1 SM0 HV2 Stat Jackrabbit BL1800 Appendix C. Power Management Power SuppliesDcin Current mA Batteries and External Battery Connections 950 mA·h = 5.4 years 20 µABattery Backup Circuit Figure C-5shows the Jackrabbit battery backup circuitryPower to Vram Switch Reset GeneratorFigure C-7shows a schematic of the chip select circuit Chip Select CircuitJackrabbit BL1800 Index SMODE0 SMODE1RABDB01.C RABDB02.C Schematics