Digi BL1800 user manual PE0 VCC HV0 SM1 SM0 HV2 Stat

Page 81

Once the LEDs, resistors, and switches are disconnected as described above, the user has a Jackrabbit board with connection points conveniently brought out to labeled points at headers J3 and J7 on the Prototyping Board. Small to medium circuits can be prototyped using point- to-point wiring with 20 to 30 AWG wire between the prototyping area and the holes at loca- tions J3 and J7. Note that the pinouts at locations J3 and J7 on the top side of the Prototyping Board (shown in Figure B-7) are a mirror image of the Jackrabbit board pinouts.

VCC PA1 PA3 PA5 PA7

GND PB1 PB3 PB5 PB7

PCLK PE7 PE5 PE3 PE1

GND HV1 HV3 +RAW

VCC

J3

 

J7

GND

GND

VCC

PA0

RXC

RXB

PA2

TXC

TXB

PA4

PC1

PC0

PA6

PC3

PC2

GND

PC5

PC4

PB0

PC7

PC6

PB2

AGND

AD0

PB4

DA1

DA0

PB6

PD1

PD0

WDO

PD3

PD2

GND

PD5

PD4

PE6

PD7

PD6

PE4

GND

GND

PE2

485+

485–

PE0

VCC

VCC

HV0

SM1

SM0

HV2

STAT

IOBEN

K

VBAT

GND

GND

GND

/RST

Figure B-7. Jackrabbit I/O Pinout on Prototyping Board (top side)

A user-supplied DE9 connector can be added as shown in Figure B-3.The signals are brought out to location J5 on the top side of the Prototyping Board.

There are six independent surface-mount 14- to 16-pin SOIC pads and fourteen 3- to 5-pin SOT23 pads. Each component has every one of its pin pads connected to a hole in the pro- totyping area. The layout is such that there is another SOIC or SOT23 pad directly on the other side of the PCB from the SOIC or SOT23 pads. However, each layout location is routed to its unique set of connection holes. Because the traces are very thin, carefully determine which set of holes is connected to which surface-mount pad. There are several standard 0805 passive-component surface-mount pads. These pads are not routed to wir- ing holes so wire must be soldered directly to the component. In addition, there is a large generic array of wide traces connected to large holes. This is provided as an additional area for surface-mount passive components. There is a moderate amount of 0.1” arrayed through-hole prototyping area (about 137 holes) for mounting through-hole components.

Thus, many circuits requiring special circuitry external to the Jackrabbit can be prototyped and tested with the Prototyping Board. If additional prototyping space is needed, install 40-pin headers at locations J3 and J7 on the top side of the Prototyping Board to connect to sockets that you would install at J3 and J7 on the top side of a second Prototyping Board.

User’s Manual

77

Image 81
Contents Programmable Single-Board Computer Jackrabbit BL1800Digi International Inc TrademarksTable of Contents Index Schematics Introduction FeaturesDevelopment and Evaluation Tools Jackrabbit FeaturesHow to Use This Manual Additional Product InformationOnline Documentation CE Compliance ImmunityEmissions Safety Design Guidelines GeneralInterfacing the Jackrabbit to Other Devices Jackrabbit BL1800 Getting Started Development Kit ContentsDevelopment Hardware Connections Attach Jackrabbit to Prototyping Board BoardAssemble AC Adapter Connect Programming CableConnect Power Installing Dynamic C Run a Sample Program TroubleshootingWhere Do I Go From Here? Real-Time ClockTechnical Support BL1800 SubsystemsHeaders Jackrabbit PinoutsDigital Inputs Digital Inputs/OutputsHV3 Sourcing Output Digital OutputsConfigurable High-Current Output Changing HV3 to a Sinking Output Bidirectional I/OA/D Converter Schematic Diagram of A/D ConverterJackrabbit BL1800 D/A Converters Schematic Diagram of D/A Converters1 DA1 V ⋅ 1 e RCTypical DA1 Voltages for Various Duty Cycles Typical DA0 Voltages for Various Duty Cycles 2 DA0User’s Manual Serial Communication 1 RS-2322 RS-485 Ground recommended 485 R16 Programming PortUser’s Manual Programming Cable Changing Between Program Mode and Run ModeMemory SramFlash Eprom Other Hardware External InterruptsClock Doubler Spectrum Spreader Jackrabbit BL1800 An Overview of Dynamic C Software ReferenceJackrabbit BL1800 Jackrabbit Sample Programs Sample ProgramsSample Program DEMOJR1.C DEMOJR1.CWatch Expression Break Point Single-SteppingSummary of Features Editing the ProgramWatching Variables Dynamically User’s Manual Other Sample Programs Illustrating Digital I/O R/W pin and DB0-DB3 on 3 RS-232 Serial Communication Sample Programs 4 RS-485 Serial Communication Sample Program Cooperative Multitasking Int vswitch Advantages of Cooperative Multitasking 1 I/O Drivers Jackrabbit Function CallsVoid digOutint channel, int value Void anaOutint channel, int value Void anaInint channel, int *value Serial Communication Drivers Upgrading Dynamic C Patches and Bug FixesAdd-On Modules Appendix A. Specifications Figure A-1shows the mechanical dimensions for the Jackrabbit Electrical and Mechanical SpecificationsTable A-1. Jackrabbit Board Specifications Exclusion Zones Exclusion ZoneFigure A-3. User Board Footprint for Jackrabbit Figure A-4. Location of Jackrabbit Configurable Positions Jumper ConfigurationsTable A-2. Jackrabbit Jumper Configurations Conformally coated area Conformal CoatingJackrabbit Use of Rabbit 2000 Parallel PortsTable A-3. Jackrabbit Pinout Configurations PD0 PD1 Jackrabbit BL1800 Appendix B. Prototyping Board Prototyping Board Overview Jackrabbit Connectors User LEDs BuzzerPrototyping Board Features Top Side Mechanical Dimensions and LayoutTop Side Using the Prototyping BoardRelay Demonstration BoardExisting Top Side Prototyping BoardPE0 VCC HV0 SM1 SM0 HV2 Stat Jackrabbit BL1800 Power Supplies Appendix C. Power ManagementDcin Current mA 950 mA·h = 5.4 years 20 µA Batteries and External Battery ConnectionsFigure C-5shows the Jackrabbit battery backup circuitry Battery Backup CircuitReset Generator Power to Vram SwitchChip Select Circuit Figure C-7shows a schematic of the chip select circuitJackrabbit BL1800 SMODE0 SMODE1 IndexRABDB01.C RABDB02.C Schematics