Digi BL1800 user manual Void anaOutint channel, int value

Page 57

Table 5. Typical Analog Output Voltages Corresponding

to Values in anaOut Function

Channel

0

PWM_MIN

PWM_MAX

1024

 

 

 

 

 

DA0

0.08 V

0.08 V

2.875 V

3.4 V

 

 

 

 

 

DA1

0.004 V

0.63 V

3.6 V

3.6 V

 

 

 

 

 

The output value is set using the following function.

void anaOut(int channel, int value);

sets the state of an analog output channel. jrioInit must be called first.

channel is the output channel number (0 or 1 on the Jackrabbit).

value is an integer from 0–1024 that corresponds to an output voltage as shown in Table 5.

NOTE: See the sample program JRIOTEST.C for examples of using the anaOut func- tion.

Effect of Interrupts on Analog I/O

The stability of the voltage output (and hence the voltage input determination as well) depends on the ability of the driver to respond quickly to interrupt requests. Dynamic C debugging, use of the printf function, or any serial communications can disrupt the pulse-width modulation utilized by the driver and cause fluctuations in the voltage out- puts. Avoid using serial communications or printf statements during portions of your program where the voltage must remain steady. Also be aware that debugging and running Dynamic C in polling mode will cause fluctuations. Finally, be certain to disable the PWM drivers by setting the output values to 0 or 1024 when you are done using them to free up the CPU.

Calibration of Values to Voltages

The analog output channels on the Jackrabbit can be more accurately calibrated for each individual Jackrabbit in the following manner (calibration of DA0 is assumed in this example, calibration of DA1 would proceed similarly):

Set desired channel output to PWM_MIN.

Measure voltage Vmin on DA0.

Set desired channel output to PWM_MAX0.

Measure voltage Vmax on DA0.

A linear relation between input value and voltage can now be calculated:

b = Vmax m ⋅ PWM_MAX0

User’s Manual

53

Image 57
Contents Programmable Single-Board Computer Jackrabbit BL1800Digi International Inc TrademarksTable of Contents Index Schematics Introduction FeaturesDevelopment and Evaluation Tools Jackrabbit FeaturesHow to Use This Manual Additional Product InformationOnline Documentation CE Compliance ImmunityEmissions Safety Design Guidelines GeneralInterfacing the Jackrabbit to Other Devices Jackrabbit BL1800 Getting Started Development Kit ContentsDevelopment Hardware Connections Attach Jackrabbit to Prototyping Board BoardAssemble AC Adapter Connect Programming CableConnect Power Installing Dynamic C Run a Sample Program TroubleshootingWhere Do I Go From Here? Real-Time ClockTechnical Support BL1800 SubsystemsHeaders Jackrabbit PinoutsDigital Inputs Digital Inputs/OutputsHV3 Sourcing Output Digital OutputsConfigurable High-Current Output Changing HV3 to a Sinking Output Bidirectional I/OA/D Converter Schematic Diagram of A/D ConverterJackrabbit BL1800 D/A Converters Schematic Diagram of D/A Converters1 DA1 V ⋅ 1 e RCTypical DA1 Voltages for Various Duty Cycles Typical DA0 Voltages for Various Duty Cycles 2 DA0User’s Manual Serial Communication 1 RS-2322 RS-485 Ground recommended 485 R16 Programming PortUser’s Manual Programming Cable Changing Between Program Mode and Run ModeMemory SramFlash Eprom Other Hardware External InterruptsClock Doubler Spectrum Spreader Jackrabbit BL1800 An Overview of Dynamic C Software ReferenceJackrabbit BL1800 Jackrabbit Sample Programs Sample ProgramsSample Program DEMOJR1.C DEMOJR1.CWatch Expression Break Point Single-SteppingSummary of Features Editing the ProgramWatching Variables Dynamically User’s Manual Other Sample Programs Illustrating Digital I/O R/W pin and DB0-DB3 on 3 RS-232 Serial Communication Sample Programs 4 RS-485 Serial Communication Sample Program Cooperative Multitasking Int vswitch Advantages of Cooperative Multitasking 1 I/O Drivers Jackrabbit Function CallsVoid digOutint channel, int value Void anaOutint channel, int value Void anaInint channel, int *value Serial Communication Drivers Upgrading Dynamic C Patches and Bug FixesAdd-On Modules Appendix A. Specifications Figure A-1shows the mechanical dimensions for the Jackrabbit Electrical and Mechanical SpecificationsTable A-1. Jackrabbit Board Specifications Exclusion Zones Exclusion ZoneFigure A-3. User Board Footprint for Jackrabbit Figure A-4. Location of Jackrabbit Configurable Positions Jumper ConfigurationsTable A-2. Jackrabbit Jumper Configurations Conformally coated area Conformal CoatingJackrabbit Use of Rabbit 2000 Parallel PortsTable A-3. Jackrabbit Pinout Configurations PD0 PD1 Jackrabbit BL1800 Appendix B. Prototyping Board Prototyping Board Overview Jackrabbit Connectors User LEDs BuzzerPrototyping Board Features Top Side Mechanical Dimensions and LayoutTop Side Using the Prototyping BoardRelay Demonstration BoardExisting Top Side Prototyping BoardPE0 VCC HV0 SM1 SM0 HV2 Stat Jackrabbit BL1800 Power Supplies Appendix C. Power ManagementDcin Current mA 950 mA·h = 5.4 years 20 µA Batteries and External Battery ConnectionsFigure C-5shows the Jackrabbit battery backup circuitry Battery Backup CircuitReset Generator Power to Vram SwitchChip Select Circuit Figure C-7shows a schematic of the chip select circuitJackrabbit BL1800 SMODE0 SMODE1 IndexRABDB01.C RABDB02.C Schematics