Digi user manual Jackrabbit BL1800

Page 26

There is a 10 kΩ resistor, R31, connected between Vcc and AD0. This resistor should pro- vide an appropriate voltage divider bias for a variety of common thermistors so that they can be connected directly between AD0 and ground. The A/D converter load is the 10 kΩ resistor connected to Vcc. Remove R31 if a smaller load is desired—this will lead to a very high input impedance for the A/D converter.

The A/D converter has no reference voltage. There is a relative accuracy between mea- surements, but no absolute accuracy. This is because Vcc can vary ±5%, the pulse-width modulated outputs might not reach the full 0 V and 5 V rails out of the Rabbit 2000 micro- processor, and the gain resistors used in the circuit have a 1% tolerance. For these reasons, each Jackrabbit needs to be calibrated individually, with the constants held in software, to be able to rely on an absolute accuracy. The Jackrabbit is sold without this calibration sup- port.

The algorithm provided to perform the conversion does a successive approximation search for the analog voltage. This takes an average of 150 ms, and a maximum of 165 ms, with a 14.7 MHz Jackrabbit.

22

Jackrabbit (BL1800)

Image 26
Contents Jackrabbit BL1800 Programmable Single-Board ComputerTrademarks Digi International IncTable of Contents Index Schematics Features IntroductionJackrabbit Features Development and Evaluation ToolsOnline Documentation How to Use This ManualAdditional Product Information Emissions CE ComplianceImmunity Interfacing the Jackrabbit to Other Devices SafetyDesign Guidelines General Jackrabbit BL1800 Development Kit Contents Getting StartedDevelopment Hardware Connections Board Attach Jackrabbit to Prototyping BoardConnect Programming Cable Assemble AC AdapterConnect Power Installing Dynamic C Troubleshooting Run a Sample ProgramTechnical Support Where Do I Go From Here?Real-Time Clock Subsystems BL1800Jackrabbit Pinouts HeadersDigital Inputs/Outputs Digital InputsDigital Outputs HV3 Sourcing Output Configurable High-Current Output Bidirectional I/O Changing HV3 to a Sinking OutputSchematic Diagram of A/D Converter A/D ConverterJackrabbit BL1800 Schematic Diagram of D/A Converters D/A ConvertersV ⋅ 1 e RC 1 DA1Typical DA1 Voltages for Various Duty Cycles 2 DA0 Typical DA0 Voltages for Various Duty CyclesUser’s Manual 2 RS-485 Serial Communication1 RS-232 Ground recommended Programming Port 485 R16User’s Manual Changing Between Program Mode and Run Mode Programming CableFlash Eprom MemorySram Clock Doubler Other HardwareExternal Interrupts Spectrum Spreader Jackrabbit BL1800 Software Reference An Overview of Dynamic CJackrabbit BL1800 Sample Programs Jackrabbit Sample ProgramsDEMOJR1.C Sample Program DEMOJR1.CSingle-Stepping Watch Expression Break PointWatching Variables Dynamically Summary of FeaturesEditing the Program User’s Manual Other Sample Programs Illustrating Digital I/O R/W pin and DB0-DB3 on 3 RS-232 Serial Communication Sample Programs 4 RS-485 Serial Communication Sample Program Cooperative Multitasking Int vswitch Advantages of Cooperative Multitasking Jackrabbit Function Calls 1 I/O DriversVoid digOutint channel, int value Void anaOutint channel, int value Void anaInint channel, int *value Serial Communication Drivers Add-On Modules Upgrading Dynamic CPatches and Bug Fixes Appendix A. Specifications Electrical and Mechanical Specifications Figure A-1shows the mechanical dimensions for the JackrabbitTable A-1. Jackrabbit Board Specifications Exclusion Zone Exclusion ZonesFigure A-3. User Board Footprint for Jackrabbit Jumper Configurations Figure A-4. Location of Jackrabbit Configurable PositionsTable A-2. Jackrabbit Jumper Configurations Conformal Coating Conformally coated areaUse of Rabbit 2000 Parallel Ports JackrabbitTable A-3. Jackrabbit Pinout Configurations PD0 PD1 Jackrabbit BL1800 Appendix B. Prototyping Board Jackrabbit Connectors User LEDs Buzzer Prototyping Board OverviewPrototyping Board Features Mechanical Dimensions and Layout Top SideUsing the Prototyping Board Top SideDemonstration Board RelayExisting Prototyping Board Top SidePE0 VCC HV0 SM1 SM0 HV2 Stat Jackrabbit BL1800 Appendix C. Power Management Power SuppliesDcin Current mA Batteries and External Battery Connections 950 mA·h = 5.4 years 20 µABattery Backup Circuit Figure C-5shows the Jackrabbit battery backup circuitryPower to Vram Switch Reset GeneratorFigure C-7shows a schematic of the chip select circuit Chip Select CircuitJackrabbit BL1800 Index SMODE0 SMODE1RABDB01.C RABDB02.C Schematics