Zhone Technologies Network Device manual Server Buses, Card Type Summary, CPU Card, Interface Card

Page 9

Zhone Technologies, Inc.

IMACS Product Book, Version 4

Server Buses

The Server buses are all the buses that are accessible by the Server cards. Effectively this is the union of User buses and WAN bases. This enables the Server cards to provide a data processing function for WAN and User cards. The Server/Server card typically provides a centralized processing function on data initially entering the system from User or WAN connections.

A Server/Server card has the same highway interfaces as a CPU card with cross-connect functionality. A Server card can therefore function as a general cross-connect, or can rely on the cross-connect on the CPU, as needed by the application. The directions of the highways may be reversed, depending on whether a Server card is interfacing with User/WAN cards or with another CPU/Server card. For example, when a Server card is interfacing with User/Wan cards, it will drive the same TDM highways a CPU card normally drives. When interfacing to a CPU card it will drive the same TDM leads of a highway as a User/WAN card drive. When interfacing to another Server card, both cards may have to be programmed as to which highway lead to drive on and which to receive on. It may have to be able to drive and receive on both of the transmit and receive highways on a per time slot basis.

Card Type Summary

The IMACS chassis architecture supports five basic types of cards. They are the Central Processing Unit (CPU) card, Interface card, Wide Area Network (WAN) card, User card and Server card. Each IMACS system has at least one CPU and WAN card and one Interface card. These three cards provide common functions for the shelf. The WAN, User, and Server cards provide the specific data terminal and network interfaces and processing required by the customer to transfer data from the premise to the network. IMACS architecture has specific card slots, which are tailored to provide either a WAN, User or Server function.

CPU Card

The CPU is the “brain” of the IMACS and performs most of the configuration, management, and MIB and common processing for the IMACS. In addition the CPU card provides the interconnection of WAN, User, and Server TDM buses through a bus connect or cross-connect function. The IMACS can have up to 2 CPU cards, which provide a redundant control and switching complex. If the primary CPU fails, the standby takes over. A Mini-DACS 1/0 cross-connect for 256 DSOs is available.

Interface Card

The interface card has common hardware, which is managed by the active CPU card. Configuration information processed on the CPU card is stored in the NVRAM on the interface card. It has interfaces to support a modem, control terminal, management port, printer, alarm relay, and provides the physical connection to the eight T1/E1 interfaces used by the WAN cards. The card also contains the clock hardware, which provides the entire back plane timing signals for the PCM buses. One Interface card is required per system.

WAN Card

The WAN cards provide electrical interfaces to high-speed digital facilities, which are connected via the Interface card. The WAN cards take the voice and data traffic off the TDM bus, which was put there by the User and Server cards, and transmit the information over a WAN link. A WAN link is typically a T1, CEPT-E1, DSX-1, or HDSL facility connection. The WAN cards support a 1:N redundancy feature with Cross Connect CPUs only.

March 2001

Page 5

Image 9
Contents Imacs Product Book Intentionally Left Blank Table of Contents Section Title Server Cards Imacs System Testing and DiagnosticsManagement Channel Concentrator MCC Internet Protocol Router Low-Bit Rate Voice ServerImacs Product Overview Imacs Features and Benefits WAN Imacs Architecture OverviewCPU WAN Imacs System Bus ArchitectureWAN Buses User BusesCard Type Summary Server BusesCPU Card Interface CardVoice Card Power Supply RedundancyData Card Server CardWAN Card Redundancy CPU Card RedundancyAdpcm Redundancy System Synchronization and ClockingMCC MIB Imacs System ManagementNetwork Frame RelayImacs Management Using FDL/SA4 T1/E1 Frame RelayRouter FDL over ESF Each FDL is mapped to a separate DS0Imacs 38.4 kbps Slip Terminal Server Concentrator Node Page M card with 2713 Hz Loop back Module# Imacs 800 Universal Enclosure Imacs 800 Universal Enclosure-Front ViewImacs 900 Universal Enclosure Imacs 800 Universal Enclosure-Rear ViewImacs 600 Front Load Enclosure Imacs 900 Universal EnclosureImacs Dimensions Chassis Height Width Depth Model Physical and Environmental CharacteristicsPower Supplies Imacs Minimum Clearances 600 800 900Imacs Compliance With Regulatory Standards Model 8903 Power Supply 120 VAC Model 8905 Power Supply, 120/240 VAC Model 8908 Power Supply, 105/240 VACRing Generator Page CPU Cards Operational Modes LED IndicatorsCode Storage Maximum number of WAN linksInterface Cards Page Interface Card Specifications YESWAN Ports Node Port DOC CS03 EIA RS232-CPage E1 Signal Format T1 Signal FormatHDB3 Performance and Test OptionsEtsi ETR WAN Card Hardware SpecificationsSpecification Short Loop Long Loop Foreign Exchange Station FXS CardVF Transmission Foreign Exchange Office FXO Card CharacteristicsPCM Coding Transhybrid LossVF Transmission Characteristics M Card Delay Specification Universal Imacs P-Phone Application Phone Station and Office Line CardsStatus Indicators Voice TransmissionSubscriber and Central Office Interface-Transmit Channel KHz Signaling Specifications 2W Port CharacteristicsSealing Current Source Sealing Current SinkTR-008 Application Voice Channel Bank ApplicationT1-E1 Conversion Imacs Using TR-008Data Card Types Type of Card Description Imacs Data Modules and ApplicationsData Card Types Page Applications HSU CardCAD/CAM Imacs and HSU Application ExamplePoint to MultiPoint One-Way Video and Audio Using HSUs Performance Statistics Dial CapabilitySRU Card Imacs Synchronous Data SignalingAsynchronous Data Standards CompatibilityFrad Card Imacs Frad Card Application Imacs w/ FradDiagnostics Frad Card SpecificationsModel 823160 Frad Card DlciOCU-DP Card Models OCU-DP CardPage Model Number Number of Ports Physical Interfaces OCU-DP SpecificationsImacs BRI Terminal Extension Application BRI CardBRI Card Models Imacs BRI Card In a Leased Line or Idsl ApplicationPage Procedural Characteristics Remote NTU Configuration OptionsModel 8262 manual settings Software Configurable OptionsOff or On per port Models 826361 and 826171 only BRI Card SpecificationsDesign Standards for Model Lult LuntBnR IP Concentrator Card Imacs Using the 822860 For Network ManagementPortMaster Integrated Office Router PM-IOR B7R IP Concentrator Card Specifications External PortsOptions port Internal PortsTechnical Specifications UDP, IcmpTCP/IP, IPX Alarm Cards Adpcm Voice Compression Server Alarm Card Specifications Model 840160, 840260Ports 840160 840260 840360 Model 8403 BuzzerT1/E1 PBX-to-PBX Trunk ApplicationBRI-U BRI-ST Automatic Call Distribution ApplicationWireless Base Station Application Imacs In a Wireless Base Station ApplicationIsdn Primary Rate Interface PRI Server Adpcm Server Card SpecificationsRemote Login Nfas Non-Facility Associated SignalingFractional PRI Provisioning Switch 23B+D on T1 30B+D on E1 Customer 3 5B+DCustomer 1 10B+D 7B+D Isdn Video Conferencing and Video BroadcastCodec Integrated Isdn Access with Sina Video T1/E1Video 25bis/DTR Data Backup and Bandwidth on DemandDialing Dialing RouterPRI to FXS Termination Local Routing Routing Capabilities Call RoutingDefault SwitchBi-directional Default Routing Alternate RoutingDpnss Trunk Routing Management Channel Concentrator MCC ServerMCC In a Multilevel Concentration Application Frame Relay Server Specifications ACS-FRS Advanced Communication Server Frame Relay ServerFECN, Becn Frame Relay Switch Port Savings Frame Relay Access and Concentration ServerFrame Relay and Internet Service Provisioning Imacs Using Frame Relay Server CardsIdsl Service Provisioning Frame Relay and Internet Services Using IMACS’ Frad ServerGrooming and Concentration in Cellular Networks Idsl Service ProvisioningFrame Switch Mobile Switch Office Channelized DS1s = 96 DS0sMobile Base Station Frame Relay DS1sFrame Relay Concentration at Corporate Headquarters Legacy Adaptation to ATM Interactive Distance Learning/Tele-Medicine Migrating Legacy Networks to ATMInteractive Distance Learning Application ATM Server SpecificationsATM I/F ATM Server Card SpecificationsON/OFF CBR, VBRMaximum Byte Size Internet Protocol RouterSnmp Support Standards SupportApplication Ethernet LAN Uses of IPRIPR-2 IPR-3Private Intranet Deployment Bundled Service DeploymentIP Routing Server Specifications Private Intranet Deployment Using IP Routing Server CardIP Routing Server Card Specifications UNI DCE, UNI DTE, NNIMTU Call Center Application Backhauling Voice Application Lbrv In a Call Center ApplicationSwitch T1/E1 Extending Voice Access ApplicationCentral VoiceMail Server T1/E1 NX64K Leased Line T1/E1Letter Meaning Password ProtectionImacs System Parameters Port Status SummaryIntegral Test Capabilities Imacs Diagnostic Capabilities Status and Alarm ManagementBit Error Rate Tester Bert Patterns Supported WAN DiagnosticsIn-Band Loop back Code Generation In-Band Loop back Code DetectionDiagnostic Capabilities of Voice Ports Voice DiagnosticsBert Direction Statistics Gathered By BertData Diagnostics Diagnostic Capabilities of Data PortsControl Lead Handling Data Systems Equipped With Cross-Connect OptionSingaling 64Kbps Nx64Kbp Toward WAN1 Yes Toward WAN264Kbps Nx64Kbp Data SingalingBert Direction Voice Single Data Super-rate Without Tones Supported Voice Single Data Super-rate WithoutToward WAN Voice Single Data Super-rate Without Benefits of Built-In DiagnosticsBuilt-In Diagnostics Example T1 Line Performance Monitoring Imacs Performance MonitoringFrame Relay Performance Monitoring DDS Line Performance MonitoringATM Performance Monitoring Conclusion