Agilent Technologies 6624A, 6621A, 6627A, 6622A, 6623A manual Table D-2. Error Responses

Page 104

 

 

Table D-2. ERROR Responses

Error Code

Message

Explanation

(ERR? query)

(ERR key)

 

0

NO ERROR

Indicates there are no errors.

1

INVALID CHAR

You sent the supply a character it did not recognize.

2

INVALID NUM

The format of your number is incorrect. Check syntax (see Chapter 5).

3 or 28

INVALID STR

You sent a command the supply does not understand. Resend a recognizable

 

 

command.

4

SYNTAX ERROR

You sent a command with improper syntax. Check syntax of your command (see

 

 

Chapter 5).

5

NUMBER RANGE

An out of range number was sent. Send a new number within the legal range.

6

NO QUERY

The computer addressed the supply to talk, but it did not first request data. Send

 

 

query first and then address the supply to talk.

7

DISP LENGTH

Quoted string in the DSP command exceeds the display length of 12 characters.

8

BUFFER FULL

May occur if too many numbers are sent. Error code 4 or error code 5 are more

 

 

likely to occur for this condition.

9

EEPROM ERROR

The EEPROM on the GP-IB board is not responding correctly to programming

 

 

commands. An instrument failure has occurred and service is required. Refer to

 

 

the Troubleshooting Section in the Service Manual.

10

HARDWARE ERR

An output error has occurred on an unknown output. Service is required. Refer

 

 

to the Troubleshooting Section in the Service Manual.

11HDW ERR CH 1 Error codes 11 through 14 refer to a specific output where an output error has occurred. Service is required. Refer to the Output Board Troubleshooting section in the Service Manual.

12

HDW ERR CH 2

Same as in error 11.

13

HDW ERR CH 3

Same as in error 11.

14

HDW ERR CH 4

Same as in error 11.

15

NO MODEL NUM

The supply’s model number cannot be found. The GP-IB Interface board may be

 

 

defective or the supply may require reprogramming. Refer to the

 

 

Troubleshooting section of the Service Manual.

16

CAL ERROR

An error has occurred during calibration. This may be the result of out of range

 

 

numbers sent. If recalibration (See Appendix A) does not fix this there may be a

 

 

hardware failure (Refer to the Troubleshooting Section in the Service Manual).

 

 

 

110 Error Codes and Messages

Image 104
Contents Operating Manual Agilent Part NoCertification Safety Summary Safety Summary Environmental ConditionsDeclaration of Conformity EMCWhat this Manual Contains Table Of Contents Remote Operation Local OperationCommand Summary Error MessagesCalibration Programming With a Series 200/300 ComputerSafety Considerations General InformationIntroduction Instrument and Manual IdentificationAccessories DescriptionModel Output Combinations AvailableBasic Operation GP-IB BoardOutput Boards Definitions SpecificationsQualifying Conditions Output Response Characteristics Specifications Source EffectSupplemental Characteristics Outputs Low High Voltage Temperature CoefficientReadback Resolution OVPLow Voltage General Information General Information General Information General Information Location and Cooling InstallationInitial Inspection Input Power Requirements Line FuseGP-IB Line FusesPower Cord Line Voltage ConversionGP-IB Interface Connector Turning On Your Supply Front Panel Controls and IndicatorsGetting Started 15V 35A Output Controls and Indicators Number Controls/lndicators Test Pattern of all Display Segments at Power-on Normal Self Test IndicationsChecking Out Your Supply Using Local Control Sample Self-Test Failure DisplayCurrent Test Voltage TestOvervoltage Test Introduction To Remote Operation Iset EnterOCP RSTSending a Remote Command OutputReading the GP-IB Address AddrDisp a Often Used CommandsGetting Data From The Supply Disp a Returning the Supply to Local Mode Output Connections and Operating Information Output RangesRange Selection Protection FeaturesOperating Quadrants Typical Output Range Characteristics Connecting the Load Page Wire Size Wire Bundled 10 a 20 a AWGRemote Voltage Sensing Multiple LoadsRemote Voltage Sensing Remote Sense ConnectionsOutput Type Formula Output Noise ConsiderationsProgramming Response Time with an Output Capacitor Open Sense LeadsOvervoltage Trigger Connections External Trigger CircuitEquivalent Internal OV Trigger Circuit Parallel Operation Power Supply Protection ConsiderationsBattery Charging Maximum Allowable Voltage Setting CV OperationCC Operation Remote SensingSeries Operation 13. Series Connections with Local Sensing CV OperationSpecifications for Series Operation 14. Series Connections with Remote SensingPage Interface Function Remote OperationGP-IB Operation GP-IB Address Selection Numeric Data Power-On Service Request PONProgramming Syntax Sheet 1 of 2. Syntax Forms for Power Supply Commands Sheet 2 of 2. Syntax Forms for Power Supply Commands Power Supply Commands Header Output Channel Data RangePower Supply Commands Initial ConditionsVoltage Programming VSET?VOUT? Current ProgrammingAvg Current-Avg RangeAvg Resolution IOUT?Range Switching Output On/OffOvercurrent Protection OCP Overvoltage OV ProtectionOVSET? Status Reporting Clear CommandMultiple Output Storage & Recall Functional Relationship of Status Registers UNR +CCUnmask 2,XXX ASTS?UNMASK? FAULT? Service Request GenerationBit Assignment of the Serial Poll Register PON RQS ERR RDY FAUSRQ? Reprogramming Delay RQS BitDisplay On/Off Other QueriesTEST? CMODE?GP-IB Code Error Messages Explanation Front Panel ResponseFront Panel Response CodeTEST? Responses Code ExplanationLocal Mode Local OperationLocal Control Of Output Functions GeneralSetting Voltage Setting CurrentSetting Overvoltage Protection Resetting Overvoltage ProtectionResetting Overcurrent Protection Displaying the Contents of the Fault RegisterSetting the Reprogramming Delay Setting the Supply’s GP-IB AddressLocal Control Of System Functions ConditionDisplaying Error Messages Addr EnterSTO Enter RCL EnterCalibration Procedures Test Equipment and Setup RequiredFigure A-1. Calibration Setup See Figure General Calibration ProcedureTable A-1. Calibrat ion Commands Header Channel Data Syntax Page Calibration Program 10 ! Calibration ExampleClear Voltmeter Output Buffer PauseFnend Input ANY More Outputs to CALIBRATE? Y or N,X$Disp END of Calibration Program Page Voltage and Current Programming Programming With a Series 200/300 ComputerPath Names Voltage and Current Programming With Variables Voltage and Current ReadbackProgramming Power Supply Registers Print OUTPUT1 is in CV Mode END ifService Request and Serial Poll Present StatusEnable Intr OFF IntrPrint ’’OVERVOLTAGE on Output #1 Print Overvoltage on Output #2Error Detection Programming Outputs Connected In Parallel Stored Operating StatesInput Enter Voltage LIMIT’’,V Input Enter Operating VOLTAGE,V1Programming Outputs Connected In Series Input Enter the Desired Current Limit POINT,ICommand Description Command SummaryTable C-1. Command Summary Table C-l. Command Summary PON? ROM?SRQ? Error Codes and Messages Power-On Self Test Messages Error ResponsesTable D-l. Power-On Self Test Error Message Test ResponsesTable D-2. Error Responses Error Code Message Explanation ERR? query ERR keyTable D-3. TEST? Responses Response Code Explanation TEST? queryManual Backdating Make ChangesGenerally Applicable Annotations II. CE’92 Product Specific Annotations6621A 6623AAgilent Sales and Support Office United States Latin AmericaManual Updates

6627A, 6621A, 6624A, 6623A, 6622A specifications

Agilent Technologies is renowned for its high-quality electronic test and measurement equipment, and the Agilent 6600 series is no exception. This series includes models like the Agilent 6621A, 6622A, 6623A, 6624A, and 6627A, each designed to meet the needs of various application requirements, making them an essential part of modern laboratories.

The Agilent 6621A is a single-output DC power supply that provides a stable output voltage and current, making it ideal for testing and powering electronic devices. It features a low noise specification, which is crucial for sensitive applications. With a maximum output voltage of 30V and a current of 3A, it offers flexibility for a range of projects, from powering prototypes to performing benchmark tests.

The Agilent 6622A, a dual-output model, enhances versatility by allowing users to power two devices concurrently. It delivers output voltages of up to 20V and a total output current of 5A, which is perfect for powering circuit boards with multiple components. The built-in voltage and current limiting functions protect the equipment under test, preventing any potential damage.

On the other hand, the Agilent 6623A provides additional capabilities with its three outputs, making it particularly suitable for complex testing procedures. With a maximum voltage of 20V and output current reaching 6A across all channels, it ensures that multiple loads can be powered simultaneously without compromising performance.

The Agilent 6624A further pushes these capabilities with its higher output power. This model boasts two outputs with a combined maximum output of up to 6A, supporting devices that require more demanding power levels. Its advanced control features allow for precise voltage and current adjustments, enhancing reliability during experiments.

Lastly, the Agilent 6627A stands out as a highly scalable power supply, capable of delivering up to 40V and 7.5A across its multiple outputs. This model is particularly beneficial for applications requiring higher voltages, enabling engineers and technicians to work with a broader array of components and systems.

All models in the Agilent 6600 series incorporate built-in protection features to guarantee safety during testing. They are equipped with memory functions, allowing users to save and recall settings quickly. Additionally, the intuitive interface and various connectivity options make these power supplies user-friendly, ensuring efficient workflow in any laboratory setting. In summary, the Agilent 6600 series offers a compelling combination of versatility, precision, and advanced features, catering to diverse electronic testing applications.