Agilent Technologies 6624A, 6621A, 6627A, 6622A, 6623A manual CC Operation, Remote Sensing

Page 54

CC Operation

For CC operation, set the output voltages as outlined in CV operation (page 55), or alternatively, program the voltage settings of both outputs to the same voltage limit point. Then program the current of each output so that the sum of both currents equals the total desired operating current. The simplest way to accomplish this is to program each output to one half of the total desired operating current. Both outputs will operate in the CC mode.

Remote Sensing

If it is necessary to remote voltage sense at the load, parallel the sense leads of output 1 with the sense leads of output 2 and connect to the load as shown in Figure 4-12. The outputs can be programmed as previously described. Additional information on programming outputs connected in parallel is given in Appendix B.

Figure 4-12. Parallel Connections with Remote Sensing

Specifications for Parallel Operation

Specifications for outputs operating in parallel can be obtained from the specifications for single outputs. Most specifications are expressed as a constant or as a percentage (or ppm) plus a constant. For parallel operation, the percentage portion remains unchanged while constant portions or any constants are changed as indicated below. For current readback accuracy and temperature coefficient of current readback, use the minus current specifications:

Current

All parallel specifications referring to current are twice the single output specification except for

 

programming resolution which is the same for both single output and parallel output operation.

Voltage

All parallel specifications referring to voltage are the same as for a single output except for CV load

 

effect, CV load cross regulation, CV source effect, and CV short term drift. Below 2.5 V, these are

 

all twice the voltage programming accuracy (including the percentage portion). CV load effect above

 

2.5 V could be twice the load effect specification for a single output. CV output noise for output

 

voltages less than 2.5 V may be slightly higher than the output noise for a single output.

Load Transient

350μs maximum to recover within 100 mV of nominal value following a load change within the

Recovery Time

range of 0 to full load.

56 Output Connections and Operating Information

Image 54
Contents Operating Manual Agilent Part NoCertification Safety Summary Safety Summary Environmental ConditionsDeclaration of Conformity EMCWhat this Manual Contains Table Of Contents Remote Operation Local OperationCalibration Command SummaryError Messages Programming With a Series 200/300 ComputerIntroduction Safety ConsiderationsGeneral Information Instrument and Manual IdentificationModel AccessoriesDescription Output Combinations AvailableBasic Operation GP-IB BoardOutput Boards Specifications Qualifying ConditionsDefinitions Output Response Characteristics Specifications Source EffectSupplemental Characteristics Outputs Low High Voltage Temperature CoefficientReadback Resolution OVPLow Voltage General Information General Information General Information General Information Installation Initial InspectionLocation and Cooling Input Power Requirements Line FuseGP-IB Line FusesPower Cord Line Voltage ConversionGP-IB Interface Connector Front Panel Controls and Indicators Getting StartedTurning On Your Supply 15V 35A Output Controls and Indicators Number Controls/lndicators Test Pattern of all Display Segments at Power-on Normal Self Test IndicationsChecking Out Your Supply Using Local Control Sample Self-Test Failure DisplayVoltage Test Overvoltage TestCurrent Test OCP Introduction To Remote OperationIset Enter RSTReading the GP-IB Address Sending a Remote CommandOutput AddrOften Used Commands Getting Data From The SupplyDisp a Disp a Returning the Supply to Local Mode Output Connections and Operating Information Output RangesProtection Features Operating QuadrantsRange Selection Typical Output Range Characteristics Connecting the Load Page Wire Size Wire Bundled 10 a 20 a AWGRemote Voltage Sensing Multiple LoadsRemote Voltage Sensing Remote Sense ConnectionsProgramming Response Time with an Output Capacitor Output Type FormulaOutput Noise Considerations Open Sense LeadsOvervoltage Trigger Connections External Trigger CircuitEquivalent Internal OV Trigger Circuit Power Supply Protection Considerations Battery ChargingParallel Operation Maximum Allowable Voltage Setting CV OperationCC Operation Remote SensingSeries Operation 13. Series Connections with Local Sensing CV OperationSpecifications for Series Operation 14. Series Connections with Remote SensingPage Remote Operation GP-IB OperationInterface Function GP-IB Address Selection Power-On Service Request PON Programming SyntaxNumeric Data Sheet 1 of 2. Syntax Forms for Power Supply Commands Sheet 2 of 2. Syntax Forms for Power Supply Commands Power Supply Commands Header Output Channel Data RangePower Supply Commands Initial ConditionsVOUT? Voltage ProgrammingVSET? Current ProgrammingAvg Current-Avg RangeAvg Resolution IOUT?Range Switching Output On/OffOvervoltage OV Protection OVSET?Overcurrent Protection OCP Clear Command Multiple Output Storage & RecallStatus Reporting Functional Relationship of Status Registers UNR +CCASTS? UNMASK?Unmask 2,XXX Bit Assignment of the Serial Poll Register FAULT?Service Request Generation PON RQS ERR RDY FAUSRQ? Reprogramming Delay RQS BitDisplay On/Off Other QueriesTEST? CMODE?GP-IB Code Error Messages Explanation Front Panel ResponseTEST? Responses Front PanelResponse Code Code ExplanationLocal Control Of Output Functions Local ModeLocal Operation GeneralSetting Voltage Setting CurrentResetting Overcurrent Protection Setting Overvoltage ProtectionResetting Overvoltage Protection Displaying the Contents of the Fault RegisterLocal Control Of System Functions Setting the Reprogramming DelaySetting the Supply’s GP-IB Address ConditionSTO Enter Displaying Error MessagesAddr Enter RCL EnterCalibration Procedures Test Equipment and Setup RequiredFigure A-1. Calibration Setup General Calibration Procedure Table A-1. Calibrat ion Commands Header Channel Data SyntaxSee Figure Page Clear Voltmeter Output Buffer Calibration Program10 ! Calibration Example PauseInput ANY More Outputs to CALIBRATE? Y or N,X$ Disp END of Calibration ProgramFnend Page Programming With a Series 200/300 Computer Path NamesVoltage and Current Programming Voltage and Current Programming With Variables Voltage and Current ReadbackService Request and Serial Poll Programming Power Supply RegistersPrint OUTPUT1 is in CV Mode END if Present StatusPrint ’’OVERVOLTAGE on Output #1 Enable IntrOFF Intr Print Overvoltage on Output #2Error Detection Programming Outputs Connected In Parallel Stored Operating StatesInput Enter Voltage LIMIT’’,V Input Enter Operating VOLTAGE,V1Programming Outputs Connected In Series Input Enter the Desired Current Limit POINT,ICommand Summary Table C-1. Command SummaryCommand Description Table C-l. Command Summary PON? ROM?SRQ? Table D-l. Power-On Self Test Error Message Error Codes and MessagesPower-On Self Test Messages Error Responses Test ResponsesTable D-2. Error Responses Error Code Message Explanation ERR? query ERR keyTable D-3. TEST? Responses Response Code Explanation TEST? queryManual Backdating Make Changes6621A Generally Applicable AnnotationsII. CE’92 Product Specific Annotations 6623AAgilent Sales and Support Office United States Latin AmericaManual Updates

6627A, 6621A, 6624A, 6623A, 6622A specifications

Agilent Technologies is renowned for its high-quality electronic test and measurement equipment, and the Agilent 6600 series is no exception. This series includes models like the Agilent 6621A, 6622A, 6623A, 6624A, and 6627A, each designed to meet the needs of various application requirements, making them an essential part of modern laboratories.

The Agilent 6621A is a single-output DC power supply that provides a stable output voltage and current, making it ideal for testing and powering electronic devices. It features a low noise specification, which is crucial for sensitive applications. With a maximum output voltage of 30V and a current of 3A, it offers flexibility for a range of projects, from powering prototypes to performing benchmark tests.

The Agilent 6622A, a dual-output model, enhances versatility by allowing users to power two devices concurrently. It delivers output voltages of up to 20V and a total output current of 5A, which is perfect for powering circuit boards with multiple components. The built-in voltage and current limiting functions protect the equipment under test, preventing any potential damage.

On the other hand, the Agilent 6623A provides additional capabilities with its three outputs, making it particularly suitable for complex testing procedures. With a maximum voltage of 20V and output current reaching 6A across all channels, it ensures that multiple loads can be powered simultaneously without compromising performance.

The Agilent 6624A further pushes these capabilities with its higher output power. This model boasts two outputs with a combined maximum output of up to 6A, supporting devices that require more demanding power levels. Its advanced control features allow for precise voltage and current adjustments, enhancing reliability during experiments.

Lastly, the Agilent 6627A stands out as a highly scalable power supply, capable of delivering up to 40V and 7.5A across its multiple outputs. This model is particularly beneficial for applications requiring higher voltages, enabling engineers and technicians to work with a broader array of components and systems.

All models in the Agilent 6600 series incorporate built-in protection features to guarantee safety during testing. They are equipped with memory functions, allowing users to save and recall settings quickly. Additionally, the intuitive interface and various connectivity options make these power supplies user-friendly, ensuring efficient workflow in any laboratory setting. In summary, the Agilent 6600 series offers a compelling combination of versatility, precision, and advanced features, catering to diverse electronic testing applications.