Agilent Technologies 6621A, 6627A, 6622A, 6623A, 6624A manual Display On/Off, Other Queries

Page 75

and address the supply to talk. The response will be a numeric value between 0 and 32.

Display On/Off

When the display is on, the commands sent across the GP-IB may experience a slower processing time because the processor must also spend time to monitor the outputs and update the display. You can shorten your command processing time by turning off the display. To turn off the display, send the command:

DSP 0

To re-enable the display send the command:

DSP 1

You can also find out the status of the display by sending the following query and addressing the supply to talk:

DSP?

The response will be either a "1’’ or a "0’’.

Message Display Capability. The display command can also be used to display messages on the front panel. Messages may consist of a maximum of twelve alphanumeric characters. Only upper case alpha characters, numbers, and spaces will be displayed.

For example, to display the message "OUTPUT 2 OK” send the following command:

DSP "OUTPUT 2 OK"

NOTE

The BASIC programming statement for a series 200/300 computer would be as follows:

OUTPUT 705; ''DSP'"'OUTPUT 2 OK""

Other Queries

In the examples discussed above, you saw how to use queries for each function discussed. The following paragraphs describe other queries which were not previously covered.

ERROR Query. The power supply can detect both programming and hardware errors. You can use either the front panel (see page 87) or the GP-IB to find out the type of error. Upon detecting an error, the error annunciator on the front panel and the ERR bit in the serial poll register will be set. When in local mode the supply will display the error name in response to pressing the ERR key on the front panel. Over the GP-IB, only the error code will be returned. After a query, the error bit is cleared. A description of these codes is given in Table 5-8. To find out what the error is, send the following query and address the supply to talk:

ERR?

The supply will respond with an error code number (see Table 5-8).

ID Query. If you want to know the model number of the power supply you are working with, you can send the ID? query over the GP-IB. To do this send the following over the GP-IB and address the supply to talk.

ID?

The supply will respond with its model number.

Test Query. You can get the power supply to perform a limited self-test at any time during its operation by sending the TEST? query over the GP-IB. This test does not affect the analog control circuits of the supply and it can be performed while the outputs are connected to external circuits. For tests of the analog control circuits refer to Chapter 3. Responses to

78 Remote Operation

Image 75
Contents Agilent Part No Operating ManualCertification Safety Summary Environmental Conditions Safety SummaryEMC Declaration of ConformityWhat this Manual Contains Table Of Contents Local Operation Remote OperationProgramming With a Series 200/300 Computer Command SummaryError Messages CalibrationInstrument and Manual Identification Safety ConsiderationsGeneral Information IntroductionOutput Combinations Available AccessoriesDescription ModelGP-IB Board Basic OperationOutput Boards Specifications Qualifying ConditionsDefinitions Output Response Characteristics Source Effect SpecificationsOutputs Low High Voltage Temperature Coefficient Supplemental CharacteristicsOVP Readback ResolutionLow Voltage General Information General Information General Information General Information Installation Initial InspectionLocation and Cooling Line Fuse Input Power RequirementsLine Fuses GP-IBLine Voltage Conversion Power CordGP-IB Interface Connector Front Panel Controls and Indicators Getting StartedTurning On Your Supply 15V 35A Output Controls and Indicators Number Controls/lndicators Normal Self Test Indications Test Pattern of all Display Segments at Power-onSample Self-Test Failure Display Checking Out Your Supply Using Local ControlVoltage Test Overvoltage TestCurrent Test RST Introduction To Remote OperationIset Enter OCPAddr Sending a Remote CommandOutput Reading the GP-IB AddressOften Used Commands Getting Data From The SupplyDisp a Disp a Returning the Supply to Local Mode Output Ranges Output Connections and Operating InformationProtection Features Operating QuadrantsRange Selection Typical Output Range Characteristics Connecting the Load Page AWG Wire Size Wire Bundled 10 a 20 aMultiple Loads Remote Voltage SensingRemote Sense Connections Remote Voltage SensingOpen Sense Leads Output Type FormulaOutput Noise Considerations Programming Response Time with an Output CapacitorExternal Trigger Circuit Overvoltage Trigger ConnectionsEquivalent Internal OV Trigger Circuit Power Supply Protection Considerations Battery ChargingParallel Operation CV Operation Maximum Allowable Voltage SettingRemote Sensing CC Operation13. Series Connections with Local Sensing CV Operation Series Operation14. Series Connections with Remote Sensing Specifications for Series OperationPage Remote Operation GP-IB OperationInterface Function GP-IB Address Selection Power-On Service Request PON Programming SyntaxNumeric Data Sheet 1 of 2. Syntax Forms for Power Supply Commands Sheet 2 of 2. Syntax Forms for Power Supply Commands Data Range Power Supply Commands Header Output ChannelInitial Conditions Power Supply CommandsCurrent Programming Voltage ProgrammingVSET? VOUT?IOUT? Avg Current-Avg RangeAvg ResolutionOutput On/Off Range SwitchingOvervoltage OV Protection OVSET?Overcurrent Protection OCP Clear Command Multiple Output Storage & RecallStatus Reporting UNR +CC Functional Relationship of Status RegistersASTS? UNMASK?Unmask 2,XXX PON RQS ERR RDY FAU FAULT?Service Request Generation Bit Assignment of the Serial Poll RegisterSRQ? RQS Bit Reprogramming DelayOther Queries Display On/OffCMODE? TEST?Front Panel Response GP-IB Code Error Messages ExplanationCode Explanation Front PanelResponse Code TEST? ResponsesGeneral Local ModeLocal Operation Local Control Of Output FunctionsSetting Current Setting VoltageDisplaying the Contents of the Fault Register Setting Overvoltage ProtectionResetting Overvoltage Protection Resetting Overcurrent ProtectionCondition Setting the Reprogramming DelaySetting the Supply’s GP-IB Address Local Control Of System FunctionsRCL Enter Displaying Error MessagesAddr Enter STO EnterTest Equipment and Setup Required Calibration ProceduresFigure A-1. Calibration Setup General Calibration Procedure Table A-1. Calibrat ion Commands Header Channel Data SyntaxSee Figure Page Pause Calibration Program10 ! Calibration Example Clear Voltmeter Output BufferInput ANY More Outputs to CALIBRATE? Y or N,X$ Disp END of Calibration ProgramFnend Page Programming With a Series 200/300 Computer Path NamesVoltage and Current Programming Voltage and Current Readback Voltage and Current Programming With VariablesPresent Status Programming Power Supply RegistersPrint OUTPUT1 is in CV Mode END if Service Request and Serial PollPrint Overvoltage on Output #2 Enable IntrOFF Intr Print ’’OVERVOLTAGE on Output #1Error Detection Stored Operating States Programming Outputs Connected In ParallelInput Enter Operating VOLTAGE,V1 Input Enter Voltage LIMIT’’,VInput Enter the Desired Current Limit POINT,I Programming Outputs Connected In SeriesCommand Summary Table C-1. Command SummaryCommand Description Table C-l. Command Summary ROM? PON?SRQ? Test Responses Error Codes and MessagesPower-On Self Test Messages Error Responses Table D-l. Power-On Self Test Error MessageError Code Message Explanation ERR? query ERR key Table D-2. Error ResponsesResponse Code Explanation TEST? query Table D-3. TEST? ResponsesMake Changes Manual Backdating6623A Generally Applicable AnnotationsII. CE’92 Product Specific Annotations 6621AUnited States Latin America Agilent Sales and Support OfficeManual Updates

6627A, 6621A, 6624A, 6623A, 6622A specifications

Agilent Technologies is renowned for its high-quality electronic test and measurement equipment, and the Agilent 6600 series is no exception. This series includes models like the Agilent 6621A, 6622A, 6623A, 6624A, and 6627A, each designed to meet the needs of various application requirements, making them an essential part of modern laboratories.

The Agilent 6621A is a single-output DC power supply that provides a stable output voltage and current, making it ideal for testing and powering electronic devices. It features a low noise specification, which is crucial for sensitive applications. With a maximum output voltage of 30V and a current of 3A, it offers flexibility for a range of projects, from powering prototypes to performing benchmark tests.

The Agilent 6622A, a dual-output model, enhances versatility by allowing users to power two devices concurrently. It delivers output voltages of up to 20V and a total output current of 5A, which is perfect for powering circuit boards with multiple components. The built-in voltage and current limiting functions protect the equipment under test, preventing any potential damage.

On the other hand, the Agilent 6623A provides additional capabilities with its three outputs, making it particularly suitable for complex testing procedures. With a maximum voltage of 20V and output current reaching 6A across all channels, it ensures that multiple loads can be powered simultaneously without compromising performance.

The Agilent 6624A further pushes these capabilities with its higher output power. This model boasts two outputs with a combined maximum output of up to 6A, supporting devices that require more demanding power levels. Its advanced control features allow for precise voltage and current adjustments, enhancing reliability during experiments.

Lastly, the Agilent 6627A stands out as a highly scalable power supply, capable of delivering up to 40V and 7.5A across its multiple outputs. This model is particularly beneficial for applications requiring higher voltages, enabling engineers and technicians to work with a broader array of components and systems.

All models in the Agilent 6600 series incorporate built-in protection features to guarantee safety during testing. They are equipped with memory functions, allowing users to save and recall settings quickly. Additionally, the intuitive interface and various connectivity options make these power supplies user-friendly, ensuring efficient workflow in any laboratory setting. In summary, the Agilent 6600 series offers a compelling combination of versatility, precision, and advanced features, catering to diverse electronic testing applications.