Agilent Technologies 6621A, 6627A, 6622A, 6623A, 6624A manual

Page 90

LINE 370,380: Prompts the user to make current calibration connections and waits for CONTINUE key to be pressed.

LINE 400: Sets the current of the specified output to the high calibration point.

LINE 410: Sets the variable Ihi to the output current as measured by the voltmeter across the shunt resistor. Note that Ihi is in amps since the voltmeter returns volts and Shunt _ resistor is in ohms.

LINE 430: Sets the current of the specified output to the low calibration point.

LINE 440: Sets the variable Ilo to the output current as measured by the voltmeter across the shunt resistor.

LINE 460: Sends the measured data in amps to the power supply for the specified channel.

LINE 480: Checks for errors. See line 280.

LINE 500: Set output voltage to 0 so that output connections may be safely moved.

LINE 520,530: Loops to Start_loop if the user has more outputs to calibrate otherwise, continues.

LINE 550: Stores the calibration constants by turning off the power supply calibration mode.

LINE 570--600: Clears the supply and ends the main program.

LINE 630: Defines the user defined function FNDvm.

LINE 640: Brings in the COM block "Instr’’.

LINE 650: Waits .02 seconds for the supply to settle at the calibration points.

LINE 660,670: Takes a reading from the voltmeter.

LINE 680: Returns the voltmeter reading to the appropriate variable within the main program.

LINE 690: Ends the user defined function FNDvm.

LINE 710: Defines the user defined function FNPs _ err.

LINE 720: Brings in the COM block "Instr".

LINE 730,740: Queries the power supply for any errors.

LINE 750: If an error occurred, the computer reports the error.

LINE 760: Returns the error number to the appropriate place within the main program.

LINE 770: Ends the user defined function FNPs _ err.

Calibration Procedures 95

Image 90
Contents Operating Manual Agilent Part NoCertification Safety Summary Safety Summary Environmental ConditionsDeclaration of Conformity EMCWhat this Manual Contains Table Of Contents Remote Operation Local OperationCalibration Command SummaryError Messages Programming With a Series 200/300 ComputerIntroduction Safety ConsiderationsGeneral Information Instrument and Manual IdentificationModel AccessoriesDescription Output Combinations AvailableBasic Operation GP-IB BoardOutput Boards Specifications Qualifying ConditionsDefinitions Output Response Characteristics Specifications Source EffectSupplemental Characteristics Outputs Low High Voltage Temperature CoefficientReadback Resolution OVPLow Voltage General Information General Information General Information General Information Installation Initial InspectionLocation and Cooling Input Power Requirements Line FuseGP-IB Line FusesPower Cord Line Voltage ConversionGP-IB Interface Connector Front Panel Controls and Indicators Getting StartedTurning On Your Supply 15V 35A Output Controls and Indicators Number Controls/lndicators Test Pattern of all Display Segments at Power-on Normal Self Test IndicationsChecking Out Your Supply Using Local Control Sample Self-Test Failure DisplayVoltage Test Overvoltage TestCurrent Test OCP Introduction To Remote OperationIset Enter RSTReading the GP-IB Address Sending a Remote CommandOutput AddrOften Used Commands Getting Data From The SupplyDisp a Disp a Returning the Supply to Local Mode Output Connections and Operating Information Output RangesProtection Features Operating QuadrantsRange Selection Typical Output Range Characteristics Connecting the Load Page Wire Size Wire Bundled 10 a 20 a AWGRemote Voltage Sensing Multiple LoadsRemote Voltage Sensing Remote Sense ConnectionsProgramming Response Time with an Output Capacitor Output Type FormulaOutput Noise Considerations Open Sense LeadsOvervoltage Trigger Connections External Trigger CircuitEquivalent Internal OV Trigger Circuit Power Supply Protection Considerations Battery ChargingParallel Operation Maximum Allowable Voltage Setting CV OperationCC Operation Remote SensingSeries Operation 13. Series Connections with Local Sensing CV OperationSpecifications for Series Operation 14. Series Connections with Remote SensingPage Remote Operation GP-IB OperationInterface Function GP-IB Address Selection Power-On Service Request PON Programming SyntaxNumeric Data Sheet 1 of 2. Syntax Forms for Power Supply Commands Sheet 2 of 2. Syntax Forms for Power Supply Commands Power Supply Commands Header Output Channel Data RangePower Supply Commands Initial ConditionsVOUT? Voltage ProgrammingVSET? Current ProgrammingAvg Current-Avg RangeAvg Resolution IOUT?Range Switching Output On/OffOvervoltage OV Protection OVSET?Overcurrent Protection OCP Clear Command Multiple Output Storage & RecallStatus Reporting Functional Relationship of Status Registers UNR +CCASTS? UNMASK?Unmask 2,XXX Bit Assignment of the Serial Poll Register FAULT?Service Request Generation PON RQS ERR RDY FAUSRQ? Reprogramming Delay RQS BitDisplay On/Off Other QueriesTEST? CMODE?GP-IB Code Error Messages Explanation Front Panel ResponseTEST? Responses Front PanelResponse Code Code ExplanationLocal Control Of Output Functions Local ModeLocal Operation GeneralSetting Voltage Setting CurrentResetting Overcurrent Protection Setting Overvoltage ProtectionResetting Overvoltage Protection Displaying the Contents of the Fault RegisterLocal Control Of System Functions Setting the Reprogramming DelaySetting the Supply’s GP-IB Address ConditionSTO Enter Displaying Error MessagesAddr Enter RCL EnterCalibration Procedures Test Equipment and Setup RequiredFigure A-1. Calibration Setup General Calibration Procedure Table A-1. Calibrat ion Commands Header Channel Data SyntaxSee Figure Page Clear Voltmeter Output Buffer Calibration Program10 ! Calibration Example PauseInput ANY More Outputs to CALIBRATE? Y or N,X$ Disp END of Calibration ProgramFnend Page Programming With a Series 200/300 Computer Path NamesVoltage and Current Programming Voltage and Current Programming With Variables Voltage and Current ReadbackService Request and Serial Poll Programming Power Supply RegistersPrint OUTPUT1 is in CV Mode END if Present StatusPrint ’’OVERVOLTAGE on Output #1 Enable IntrOFF Intr Print Overvoltage on Output #2Error Detection Programming Outputs Connected In Parallel Stored Operating StatesInput Enter Voltage LIMIT’’,V Input Enter Operating VOLTAGE,V1Programming Outputs Connected In Series Input Enter the Desired Current Limit POINT,ICommand Summary Table C-1. Command SummaryCommand Description Table C-l. Command Summary PON? ROM?SRQ? Table D-l. Power-On Self Test Error Message Error Codes and MessagesPower-On Self Test Messages Error Responses Test ResponsesTable D-2. Error Responses Error Code Message Explanation ERR? query ERR keyTable D-3. TEST? Responses Response Code Explanation TEST? queryManual Backdating Make Changes6621A Generally Applicable AnnotationsII. CE’92 Product Specific Annotations 6623AAgilent Sales and Support Office United States Latin AmericaManual Updates

6627A, 6621A, 6624A, 6623A, 6622A specifications

Agilent Technologies is renowned for its high-quality electronic test and measurement equipment, and the Agilent 6600 series is no exception. This series includes models like the Agilent 6621A, 6622A, 6623A, 6624A, and 6627A, each designed to meet the needs of various application requirements, making them an essential part of modern laboratories.

The Agilent 6621A is a single-output DC power supply that provides a stable output voltage and current, making it ideal for testing and powering electronic devices. It features a low noise specification, which is crucial for sensitive applications. With a maximum output voltage of 30V and a current of 3A, it offers flexibility for a range of projects, from powering prototypes to performing benchmark tests.

The Agilent 6622A, a dual-output model, enhances versatility by allowing users to power two devices concurrently. It delivers output voltages of up to 20V and a total output current of 5A, which is perfect for powering circuit boards with multiple components. The built-in voltage and current limiting functions protect the equipment under test, preventing any potential damage.

On the other hand, the Agilent 6623A provides additional capabilities with its three outputs, making it particularly suitable for complex testing procedures. With a maximum voltage of 20V and output current reaching 6A across all channels, it ensures that multiple loads can be powered simultaneously without compromising performance.

The Agilent 6624A further pushes these capabilities with its higher output power. This model boasts two outputs with a combined maximum output of up to 6A, supporting devices that require more demanding power levels. Its advanced control features allow for precise voltage and current adjustments, enhancing reliability during experiments.

Lastly, the Agilent 6627A stands out as a highly scalable power supply, capable of delivering up to 40V and 7.5A across its multiple outputs. This model is particularly beneficial for applications requiring higher voltages, enabling engineers and technicians to work with a broader array of components and systems.

All models in the Agilent 6600 series incorporate built-in protection features to guarantee safety during testing. They are equipped with memory functions, allowing users to save and recall settings quickly. Additionally, the intuitive interface and various connectivity options make these power supplies user-friendly, ensuring efficient workflow in any laboratory setting. In summary, the Agilent 6600 series offers a compelling combination of versatility, precision, and advanced features, catering to diverse electronic testing applications.