Agilent Technologies 6627A, 6621A Enabling/Disabling an Output, Setting Overvoltage Protection

Page 81

Enabling/Disabling an Output

The selected output channel can be turned on and off from the front panel. The OUTPUT ON/OFF key toggles the selected output on and off. When an output is turned off, the message ’’DISABLED" will be displayed.

The OUTPUT ON/OFF key will not affect any other programmed functions nor will it reset an overvoltage or overcurrent condition. An output disabled by the OUTPUT ON/OFF key will behave as if it were programmed to zero volts and minimum current.

Setting Overvoltage Protection

Programmable overvoltage protection (OVP) guards your load against overvoltage by crowbarring and downprogramming the power supply output if the programmed overvoltage setting is exceeded.

A fixed OVP circuit with a trip level about 20 percent above the maximum programmable voltage acts as a backup to the programmable OVP. When overvoltage protection is activated, the output is shorted and the message ’’OVERVOLTAGE" will appear on the front panel display.

The selected output’s overvoltage setting is programmed locally using the OVSET key. For example, program the overvoltage to 10.5 volts by pressing:

OVSET

1

0

.

5

ENTER

Resetting Overvoltage Protection

The condition that caused the OV must first be cleared and then the output can be returned to its previous state by pressing the OVRST key.

Enabling/Disabling Overcurrent Protection

The overcurrent protection feature guards against excessive output currents. When the output goes into the + CC mode and OCP is enabled, the OCP circuit is activated which downprograms the output voltage and disables the output. For this condition, the message ’’OVERCURRENT’’ appears on the front panel display.

The selected output’s overcurrent protection feature can be turned on and off from the front panel. The OCP key toggles the selected output’s overcurrent protection circuit on and off. When it is on (enabled), the OCP ENBLD annunciator will be on.

Resetting Overcurrent Protection

The condition that activated the OCP circuit must first be cleared then the output can be returned to its previous state by pressing the OCRST key.

Displaying the Contents of the Fault Register

Each output channel has a fault register which can be used in conjunction with the status and mask registers to report a fault condition. A detailed description of these registers is given in Chapter 5. The main points of this description are repeated below for continuity in explaining how to use the front panel UNMASK and FAULT keys.

The mask register, which is set by the user, is used to specify which bits in the status register are enabled (unmasked) to set bits in the fault register. A bit is set in the fault register when the corresponding bit in the status register changes from 0 to 1 and the corresponding bit in the mask register is 1. Each output channel has its status, mask, and fault registers arranged as shown in Table 6-1.

Local Operation 85

Image 81
Contents Agilent Part No Operating ManualCertification Safety Summary Environmental Conditions Safety SummaryEMC Declaration of ConformityWhat this Manual Contains Table Of Contents Local Operation Remote OperationError Messages Command SummaryCalibration Programming With a Series 200/300 ComputerGeneral Information Safety ConsiderationsIntroduction Instrument and Manual IdentificationDescription AccessoriesModel Output Combinations AvailableGP-IB Board Basic OperationOutput Boards Specifications Qualifying ConditionsDefinitions Output Response Characteristics Source Effect SpecificationsOutputs Low High Voltage Temperature Coefficient Supplemental CharacteristicsOVP Readback ResolutionLow Voltage General Information General Information General Information General Information Installation Initial InspectionLocation and Cooling Line Fuse Input Power RequirementsLine Fuses GP-IBLine Voltage Conversion Power CordGP-IB Interface Connector Front Panel Controls and Indicators Getting StartedTurning On Your Supply 15V 35A Output Controls and Indicators Number Controls/lndicators Normal Self Test Indications Test Pattern of all Display Segments at Power-onSample Self-Test Failure Display Checking Out Your Supply Using Local ControlVoltage Test Overvoltage TestCurrent Test Iset Enter Introduction To Remote OperationOCP RSTOutput Sending a Remote CommandReading the GP-IB Address AddrOften Used Commands Getting Data From The SupplyDisp a Disp a Returning the Supply to Local Mode Output Ranges Output Connections and Operating InformationProtection Features Operating QuadrantsRange Selection Typical Output Range Characteristics Connecting the Load Page AWG Wire Size Wire Bundled 10 a 20 aMultiple Loads Remote Voltage SensingRemote Sense Connections Remote Voltage SensingOutput Noise Considerations Output Type FormulaProgramming Response Time with an Output Capacitor Open Sense LeadsExternal Trigger Circuit Overvoltage Trigger ConnectionsEquivalent Internal OV Trigger Circuit Power Supply Protection Considerations Battery ChargingParallel Operation CV Operation Maximum Allowable Voltage SettingRemote Sensing CC Operation13. Series Connections with Local Sensing CV Operation Series Operation14. Series Connections with Remote Sensing Specifications for Series OperationPage Remote Operation GP-IB OperationInterface Function GP-IB Address Selection Power-On Service Request PON Programming SyntaxNumeric Data Sheet 1 of 2. Syntax Forms for Power Supply Commands Sheet 2 of 2. Syntax Forms for Power Supply Commands Data Range Power Supply Commands Header Output ChannelInitial Conditions Power Supply CommandsVSET? Voltage ProgrammingVOUT? Current ProgrammingIOUT? Avg Current-Avg RangeAvg ResolutionOutput On/Off Range SwitchingOvervoltage OV Protection OVSET?Overcurrent Protection OCP Clear Command Multiple Output Storage & RecallStatus Reporting UNR +CC Functional Relationship of Status RegistersASTS? UNMASK?Unmask 2,XXX Service Request Generation FAULT?Bit Assignment of the Serial Poll Register PON RQS ERR RDY FAUSRQ? RQS Bit Reprogramming DelayOther Queries Display On/OffCMODE? TEST?Front Panel Response GP-IB Code Error Messages ExplanationResponse Code Front PanelTEST? Responses Code ExplanationLocal Operation Local ModeLocal Control Of Output Functions GeneralSetting Current Setting VoltageResetting Overvoltage Protection Setting Overvoltage ProtectionResetting Overcurrent Protection Displaying the Contents of the Fault RegisterSetting the Supply’s GP-IB Address Setting the Reprogramming DelayLocal Control Of System Functions ConditionAddr Enter Displaying Error MessagesSTO Enter RCL EnterTest Equipment and Setup Required Calibration ProceduresFigure A-1. Calibration Setup General Calibration Procedure Table A-1. Calibrat ion Commands Header Channel Data SyntaxSee Figure Page 10 ! Calibration Example Calibration ProgramClear Voltmeter Output Buffer PauseInput ANY More Outputs to CALIBRATE? Y or N,X$ Disp END of Calibration ProgramFnend Page Programming With a Series 200/300 Computer Path NamesVoltage and Current Programming Voltage and Current Readback Voltage and Current Programming With VariablesPrint OUTPUT1 is in CV Mode END if Programming Power Supply RegistersService Request and Serial Poll Present StatusOFF Intr Enable IntrPrint ’’OVERVOLTAGE on Output #1 Print Overvoltage on Output #2Error Detection Stored Operating States Programming Outputs Connected In ParallelInput Enter Operating VOLTAGE,V1 Input Enter Voltage LIMIT’’,VInput Enter the Desired Current Limit POINT,I Programming Outputs Connected In SeriesCommand Summary Table C-1. Command SummaryCommand Description Table C-l. Command Summary ROM? PON?SRQ? Power-On Self Test Messages Error Responses Error Codes and MessagesTable D-l. Power-On Self Test Error Message Test ResponsesError Code Message Explanation ERR? query ERR key Table D-2. Error ResponsesResponse Code Explanation TEST? query Table D-3. TEST? ResponsesMake Changes Manual BackdatingII. CE’92 Product Specific Annotations Generally Applicable Annotations6621A 6623AUnited States Latin America Agilent Sales and Support OfficeManual Updates

6627A, 6621A, 6624A, 6623A, 6622A specifications

Agilent Technologies is renowned for its high-quality electronic test and measurement equipment, and the Agilent 6600 series is no exception. This series includes models like the Agilent 6621A, 6622A, 6623A, 6624A, and 6627A, each designed to meet the needs of various application requirements, making them an essential part of modern laboratories.

The Agilent 6621A is a single-output DC power supply that provides a stable output voltage and current, making it ideal for testing and powering electronic devices. It features a low noise specification, which is crucial for sensitive applications. With a maximum output voltage of 30V and a current of 3A, it offers flexibility for a range of projects, from powering prototypes to performing benchmark tests.

The Agilent 6622A, a dual-output model, enhances versatility by allowing users to power two devices concurrently. It delivers output voltages of up to 20V and a total output current of 5A, which is perfect for powering circuit boards with multiple components. The built-in voltage and current limiting functions protect the equipment under test, preventing any potential damage.

On the other hand, the Agilent 6623A provides additional capabilities with its three outputs, making it particularly suitable for complex testing procedures. With a maximum voltage of 20V and output current reaching 6A across all channels, it ensures that multiple loads can be powered simultaneously without compromising performance.

The Agilent 6624A further pushes these capabilities with its higher output power. This model boasts two outputs with a combined maximum output of up to 6A, supporting devices that require more demanding power levels. Its advanced control features allow for precise voltage and current adjustments, enhancing reliability during experiments.

Lastly, the Agilent 6627A stands out as a highly scalable power supply, capable of delivering up to 40V and 7.5A across its multiple outputs. This model is particularly beneficial for applications requiring higher voltages, enabling engineers and technicians to work with a broader array of components and systems.

All models in the Agilent 6600 series incorporate built-in protection features to guarantee safety during testing. They are equipped with memory functions, allowing users to save and recall settings quickly. Additionally, the intuitive interface and various connectivity options make these power supplies user-friendly, ensuring efficient workflow in any laboratory setting. In summary, the Agilent 6600 series offers a compelling combination of versatility, precision, and advanced features, catering to diverse electronic testing applications.