Emerson 4000 manual Ceramic Diffusion Element Replacement

Page 144

Instruction Manual

IB-106-340 Rev. 3.0 December 2003

Oxymitter 4000

11.Install the entire electronics per para- graph 9-4c,steps 7 through 13.

12.Apply anti-seize compound to the threads of the cell assembly, hub, and setscrews. Reinstall the hub on the cell assembly. Using pin spanner wrenches, torque to 10 ft-lbs (14 N·m). If applicable, reinstall the vee deflector, orienting apex toward gas flow. Secure with the setscrews and anti-seize com- pound. Torque to 25 in-lbs (2.8 N·m).

13.On systems equipped with an abrasive shield, install the dust seal gaskets, with joints 180° apart.

14.Reinstall the probe and gasket on the stack flange.

15.Follow the instructions in paragraph

9-4a.2to install the Oxymitter 4000 into the stack or duct. If installing an Oxy- mitter 4000/SPS 4000 assembly, follow the instructions in paragraph 9-4b.2.If there is an abrasive shield in the stack, make sure the dust seal gaskets are in place as they enter the 15° reducing cone.

16.Turn on power and monitor thermocou- ple output. It should stabilize at 29.3+0.2 mV. Set reference air flow at 2 scfh (56.6 l/hr). After the Oxymitter 4000 stabilizes, calibrate the unit. If new components have been installed, repeat calibration after 24 hours of operation.

j.Ceramic Diffusion Element Replacement

NOTE

This refers to the ceramic diffusion element only.

1.General. The diffusion element pro- tects the cell from particles in process gases. Normally, it does not need to be replaced because the vee deflector protects it from particulate erosion.

In severe environments, the filter may be broken or subject to excessive ero- sion. Examine the ceramic diffusion element whenever removing the probe for any purpose. Replace if damaged.

Damage to the ceramic diffusion ele- ment may become apparent during calibration. Compare probe response with previous response. A broken diffu- sion element will cause a slower re- sponse to calibration gas. Hex wrenches needed to remove setscrews and socket head screws in the follow- ing procedure are available as part of a Probe Disassembly Kit, Table 11-1.

2.Replacement Procedure.

(a)Follow the instructions in para- graph 0 to remove the Oxymitter 4000 from the stack or duct.

(b)Loosen setscrews, Figure 9-11,using hex wrench from Probe Dis- assembly Kit, Table 11-1,and re- move vee deflector. Inspect setscrews. If damaged, replace with stainless setscrews coated with anti-seize compound.

RETAINER

OPTIONAL CERAMIC

DIFFUSION ELEMENT

SETSCREW

HUB

CEMENTCEMENT

PORTFILLET

VEE

DEFLECTOR

22220029

Figure 9-11. Ceramic Diffusion Element

Replacement

9-16 Maintenance and Service

Rosemount Analytical Inc. A Division of Emerson Process Management

Image 144
Contents Oxymitter IB-106-340 Rev DecemberEssential Instructions Highlights of Changes Effective December, 2003 RevSummary Highlights of Changes Table of Contents OxymitterStartup and Operation of Oxymitter 4000 with LOI List of Illustrations Oxymitter 4000 Gas Connections Calibration Gas ConnectionsList of Tables 11-311-5 11-1Preface DefinitionsOxymitter Belangrijk Vigtigt Oxymitter Tärkeää Oxymitter Wichtig Importante Viktig Oxymitter Oxymitter Viktigt Oxymitter Ceramic Fiber Products Material Safety Data Sheet July 1Section II. Physical Data Section V. Health Hazard Data Section VI. Reactivity Data Section VII. Spill or Leak Procedures Section IX. Special Precautions Oxymitter What YOU Need to Know Oxymitter 4000 with Remote Imps 4000 OptionOxymitter Remote Electronics with Integral SPS Option Can YOU USE the Following Quick Start GUIDE? Use this Quick Start Guide ifQuick Start Guide For Oxymitter 4000 Systems Oxymitter 4000 with SPS 4000 Wiring Diagram Quick Reference Guide Manual Calibration Instructions Performing a Manual Calibration with a Membrane KeypadHart Communicator Fast KEY Sequences Technical Support HotlineSection Description and Specifications Component Checklist of Typical System Package ContentsSystem Overview Typical System Package Oxymitter Integrally Mounted Remote MountedMembrane Keypad Model 751 LCD Display Panel Control Room Asset Management Solutions Line Voltage Standard Imps 4000 MultiprobeAutocalibration Option SPS 4000 Single Probe Autocalibration OptionCalibra Imps 4000 Optional SPS 4000 OptionalMounting Components FigureFront View Rear View of Manifold onlyModel 751 Remote Powered Loop LCD Display Probe OptionsDiffusion Elements 13. Hastelloy Cup-Type Diffusion Assembly Abrasive Shield AssemblyView a Specifications Oxymitter 100% relative humidity Nema 4X IP56In. NPT 90 to 250 VAC, 50/60 HzProduct Matrix Code Sensing Probe TypeCalibration Components Part Number Description3D39695G01 3D39695G023D39695G03 3D39695G04Section Installation Mechanical InstallationSelecting Location Oxymitter 4000 Probe Installation Oxymitter 4000 Remote Electronics Installation Horizontal Mounted SPS 4000 a Vertical Mounted SPS 4000 aOxymitter 4000 with Abrasive Shield Oxymitter 4000 Adapter Plate Dimensions Oxymitter 4000 Adapter Plate Installation Oxymitter 4000 Abrasive Shield Bracing Installation Remote Electronics Installation Installation with Drip Loop and Insulation RemovalAll wiring must conform to local and national codes Connect Line VoltageIntegral Electronics Install Interconnecting Cable Probe WALL-MOUNTED Electrical Installation for Oxymitter 4000 with SPS Not Used Line Connect Relay Output Wiring Connect 4-20 mA Signal WiringPneumatic Installation for Oxymitter 4000 Without SPS Reference Air Package13. Air Set, Plant Air Connection Pneumatic Installation for Oxymitter 4000 with SPSImps 4000 Connections Oxymitter Section Configuration of Oxymitter With Membrane Keypad Verify Mechanical InstallationVerify Terminal Block Wiring GeneralVerify Oxymitter 4000 Configuration SW2Model 751. The loop-driven LCD display Heater T/C Diagnostic Alarm Calibration Handshake SignalLogic I/O Configuration as set at HART/AMS or LOI Mode Logic I/ORecommended Configuration MA Signal Upon Critical AlarmCalibration Oxymitter Section Configuration of Oxymitter 4000 with LOI Electronics Housing Terminals and LOIVerify Oxymitter 4000 Configuration Defaults Oxymitter 4000 with LOI Logic I/O Recommended Configuration Oxymitter Power UP General OperationDiagnostic Alarm LEDS. If there Is an error in the system, one of theseTROUBLESHOOTING. Case of multiple errors, only oneSection Startup and Operation Oxymitter 4000 with LOI O2 0.00% LK warm up 367dgCO2 2.59% LK normal Start UP Oxymitter 4000 CalibrationLOI Features LockoutLOI Menu Tree DataOxymitter 4000 Setup AT the LOI SYSTEM/Calibration SetupSYSTEM/Input/Output SYSTEM/ParametersLOI Installation SYSTEM/StatusSYSTEM/Software Sensor DataModel 751 Remote Powered Loop Oxymitter 4000 Test PointsTP3 and TP4 monitor the heater thermo TP1 and TP2 monitor the oxygen cellSignal Line Connections, ≥ 250 Ohms Load Resistance Hart Communicator Signal Line Connections HART/AMSOverview Method 1, For Load Resistance ≥ 250 OhmsLogic I/O Configurations Logic I/O Configuration ModeHart Communicator PC Connections OFF-LINE and ON-LINE OperationsMenu Tree for HART/AMS on the Oxymitter 4000 Sheet 1 Menu Tree for HART/AMS on the Oxymitter 4000 Sheet 2 Menu Tree for HART/AMS on the Oxymitter 4000 Sheet 3 Hart Communicator Manual O2 CAL Method Complete CAL Recommended Apply GAS GAS 1 FlowFrom the Device Setup screen, select From the Detailed Setup screen, selectDefining a Timed Calibration VIA Hart Oxymitter Section Troubleshooting 100EMFmV 16.1 18.4 21.1 23.8 27.2 31.2 36.0Alarm Indications Alarm Contacts Identifying and Correcting AlarmIndications with Membrane Keypad Flashes Status MA Line Fault Clearing LEDAlarms O2 T/C Open Fault 1, Open ThermocoupleKeypad LOIAlarms O2 T/C Shorted Fault 2, Shorted ThermocoupleAlarms O2 T/C Reversed Fault 3, Reversed Thermocouple Wiring orFaulty PC Board Alarms ADC Error Fault 4, A/D Comm ErrorAlarms O2 Heater Open Fault 5, Open HeaterAlarms Very Hi O2 Temp Fault 6, High High Heater TempAlarms Board Temp Hi Fault 7, High Case TempAlarms O2 Temp Low Fault 8, Low Heater TempAlarms O2 Temp Hi Fault 9, High Heater TempAlarms O2 Cell Open Fault 10, High Cell mVAlarms O2 Cell Bad Fault 11, Bad CellAlarms EEprom Corrupt Fault 12, Eeprom CorruptFault 13, Invalid Slope Fault 14, Invalid Constant Alarms Calib Failed Fault 15, Last Calibration FailedProbe passes calibration, but still appears to read high Probe passes calibration, but still appears to read lowHow do I detect a plugged diffuser? SPS 4000 Troubleshooting Can I calibrate a badly plugged diffuser?SPS 4000 Fault Finding Symptom Check Remedy Symptom no Test GAS Flow 19. SPS 4000 Troubleshooting Flowchart Sheet 119. SPS 4000 Troubleshooting Flowchart Sheet 2 Section Maintenance and Service Calibration Oxymitter 4000 with a Membrane KeypadStart Calib from the Calibra Tion menuAlarms Manual CalibrationOxymitter Apply Gas Hit E when ready CALIBRATION/ Start CalibrationFlow Gas 1xxxxs Read Gas 1xxxxs Done Gas PurgexxxxsOxymitter 4000 Repair ReplaceOxymitter 4000 with Integral Electronics, Exploded View Remote Electronics Oxymitter Electronic Assembly Electronic Assembly Replacement Fuse Replacement FigureTerminal Block Replacement Entire Probe Replacement Excluding Probe Head Heater Strut ReplacementHeater Strut Assembly Probe to Probe Head Assembly Remote Electronics Only Cell ReplacementOxymitter 11. Ceramic Diffusion Element Replacement Oxymitter SPS 4000 Maintenance and Component Replacement Board Replacement 13. SPS 4000 Manifold Assembly Solenoid Replacement Pressure Switch ReplacementPower Supply Board Interface BoardCheck Valve Replacement Pressure Regulator Optional MaintenanceFlowmeter Adjustments Flowmeter Replacement 15. Calibration Gas and Reference Air Components Calibration Record For Rosemount Analytical In Situ O2 Probe Value to begin migrating back to the process valueSection Return of Material Oxymitter Section Replacement Parts Replacement Parts for ProbeReplacement Parts for Probe Part Number Figure and Index No No Dust Seal DescriptionCell Replacement Kit Oxymitter Probe Disassembly Kit Replacement Parts for Electronics Replacement Parts for SPS Replacement Parts for Calibration ComponentsOxymitter Section Optional Accessories Asset Management Solutions AMSHart Handheld 275/375 Communicator BY-PASS PackagesImps 4000 Intelligent Multiprobe Test GAS Sequencer SPS 4000 Single Autocalibration SequencerOxymitter O2 Calibration GAS Catalyst RegenerationOxymitter Section Index Fuse, 8-22, 8-23, 9-18 Warranty Oxymitter Serial no Order no
Related manuals
Manual 32 pages 58.37 Kb

4000 specifications

The Emerson 4000 is a state-of-the-art automation platform designed to enhance industrial processes and improve operational efficiency. This advanced system is recognized for its unparalleled reliability and flexibility, making it suitable for various industries such as oil and gas, chemicals, pharmaceuticals, and power generation.

One of the standout features of the Emerson 4000 is its robust architecture that comprises distributed control systems (DCS) and a comprehensive suite of software applications. This integration allows for real-time monitoring and control of complex processes, ensuring that operators have access to crucial data for informed decision-making. The system supports a wide range of field devices and protocols, facilitating seamless connectivity across various platforms.

The Emerson 4000 employs innovative technologies that elevate its performance. It incorporates advanced analytics and machine learning capabilities, which enable predictive maintenance and reduce downtime. By analyzing historical data and identifying patterns, the system can forecast potential failures, allowing operators to address issues before they escalate. This leads to increased uptime and significant cost savings.

Another key characteristic of the Emerson 4000 is its user-friendly interface. The intuitive design ensures that operators can navigate the system with ease, reducing training time and enhancing productivity. The customizable dashboards provide real-time insights and facilitate quick access to critical information, allowing teams to respond to changes in the process swiftly.

Security is also a cornerstone of the Emerson 4000 platform. The system includes multiple layers of cybersecurity measures to safeguard sensitive data and maintain the integrity of operations. This is crucial in today’s environment, where cyber threats are a significant concern for industrial facilities.

In addition, the Emerson 4000 excels in scalability. It can be easily expanded to accommodate the growing needs of a business without compromising performance. Whether an organization is looking to integrate additional processes or expand its operations geographically, the Emerson 4000 is designed to adapt and grow alongside the business.

Overall, the Emerson 4000 stands out as a powerful tool for industrial automation. Its combination of reliability, advanced technology, user-friendliness, security, and scalability makes it an ideal choice for organizations seeking to optimize their operations and drive efficiency in an increasingly competitive landscape.