Friedrich R410A manual Explanation of charts

Page 23

Correct CFM (if needed):

Chart B – Correction Multipliers

Explanation of charts

Chart A is the nominal dry coil VERT-I-PAK CFMs. Chart B is the correction factors beyond nominal conditions.

1 ½ TON SYSTEM ( 18,000 Btu)

Operating on high speed @ 230 volts with dry coil

measured external static pressure .10

Air Flow = 450 CFM

In the same SYSTEM used in the previous example but having a WET coil you must use a correction factor of

.95 (i.e. 450 x .95=428 CFM) to allow for the resistance (internal) of the condensate on the coil.

It is important to use the proper procedure to check external Static Pressure and determine actual airflow. Since in the case of the VERT-I-PAK, the condensate will cause a reduction in measured External Static Pressure for the given airflow.

It is also important to remember that when dealing with VERT-l-PAK units that the measured External Static Pressure increases as the resistance is added externally to the cabinet. Example: duct work, filters, grilles.

Indoor Airflow Data

The Vert-I-Pak A series units must be installed with a free return air configuration. The table below lists the indoor airflow at corresponding static pressures. All units are rarted at low speed.

The Vert-I-Pak units are designed for either single speed or two fan speed operation. For single speed operation refer to the airflow table below and select the most appropriate CFM based on the ESP level. Connect the fan output from the thermostat to the unit on either the GL terminal for low speed or to the GH terminal for high speed operation.

For thermostats with two-speed fan outputs connect the low speed output to the unit GL terminal and the high speed output to the GH terminal.

Ductwork Preparation

If flex duct is used, be sure all the slack is pulled out of the flex duct. Flex duct ESP can increase considerably when not fully extended. DO NOT EXCEED a total of .30 ESP, as this is the MAXIMUM design limit for the VERT-I-PAK A-Series unit.

IMPORTANT: FLEX DUCT CAN COLLAPSE AND CAUSE AIRFLOW RESTRICTIONS. DO NOT USE FLEX DUCT FOR: 90 DEGREE BENDS, OR UNSUPPORTED RUNS OF 5 FT. OR MORE.

Fresh Air Door

The Fresh Air Door is an “intake” system. The fresh air door opened via a slide on the front of the chassis located just above the indoor coil. Move the slide left to open and right to close the fresh air door. The system is capable of up to 60 CFM of fresh air @ ~.3” H20 internal static pressure.

Checking Approximate Airflow

If an inclined manometer or Magnehelic gauge is not available to check the External Static Pressure, or the blower performance data is unavailable for your unit, approximate air flow call be calculated by measuring the temperature rise, then using tile following criteria.

KILOWATTS x 3413

= CFM

Temp Rise x 1.08

Electric Heat Strips

The approximate CFM actually being delivered can be calculated by using the following formula:

DO NOT simply use the Kilowatt Rating of the heater (i.e. 2.5, 3.4, 5.0) as this will result in a less-than-correct airflow calculation. Kilowatts may be calculated by multiplying the measured voltage to the unit (heater) times the measured current draw of all heaters (ONLY) in operation to obtain watts. Kilowatts are than obtained by dividing by 1000.

EXAMPLE: Measured voltage to unit (heaters) is 230 volts. Measured Current Draw of strip heaters is 11.0 amps.

230 x 11.0 = 2530 2530/1000 = 2.53 Kilowatts 2.53 x 3413 = 8635

Supply Air

 

95°F

Return Air

 

75°F

 

Temperature Rise

20°

20 x 1.08 = 21.6

8635

= 400 CFM

21.6

22

Image 23
Contents Single Package Vertical Air Conditioning System Table of Contents Your safety and the safety of others are very important Important Safety InformationRefrigeration System Hazards Property Damage Hazards IntroductionProduct Line 00001Serial Number Year Manufactured Production RUN NumberElectrical Requirements Chassis Specifi cations Cooling Performance Data Technical Service DataQuiet Start/Stop Electronic Control Board FeaturesHeat Mode in Cool with Electric Heat Units Compressor Lock Out Time Electric Shock Hazard Low Voltage Interface ConnectionsCUT/SEVER Hazard ServiceGround Air Intake Vpak 9-18K BTU Units Components IdentificationAir Intake Front Side Vpak 24K BTU Units Components IdentificationError Codes and Alarm Status Components Testing Fuse 10 Amps 250 VaC Blower / FAN Motor Test Capacitor Check with Capacitor AnalyzerCapacitor Connections Blower / FAN MotorDrain PAN Valve Heater Elements and Limit SWITCHES’ SpecificationsExternal Static Pressure Explanation of charts Refrigeration Sequence of Operation Refrigeration AssemblyRisk of Electric Shock Sealed Refrigeration System RepairsEquipment Required Equipment Must be CapableFreeze Hazard Method Of Charging / RepairsUndercharged Refrigerant Systems Burn HazardRestricted Refrigerant System Overcharged Refrigerant SystemsCapillary Tube Systems Cooling ModeHeating Mode Hermetic Components CheckReversing Valve DESCRIPTION/OPERATION Fire Hazard Procedure For Changing Reversing ValveTouch Test in Heating/Cooling Cycle Determine L.R.V Single Phase ConnectionsSingle Phase Running and L.R.A. Test Locked Rotor Voltage L.R.V. TestGround Test Single Phase Resistance TestExternal Overload Vpak 9, 12, 18 K Btus Internal Overload Vpak 24 K BtusHigh Temperatures Recommended procedure for compressor replacementElectrical Shock Hazard Routine MaintenanceRoom AIR Conditioner Unit Performance Test Data Sheet THERMISTORS’ Resistance Values 9K BTU, 12K BTU, & 18K BTU Electrical Troubleshooting Chart CoolingCompressor outdoor Electrical Troubleshooting Chart Cooling 24K BTUHeat Pump Mode Electrical Troubleshooting Chart Heat PumpTroubleshooting Chart Heating Heat Pump Troubleshooting Chart CoolingHeat Pump with Electric Heat Remote Wall Thermostat Wiring DiagramsGH GL B Y RT6 6TR Cool with Electric HeatGH GL B Y W R GH GL O/B Y W Wiring Diagram Heat Pump EH 5KW, 10.0KW Model Description Photo Friedrich Air Conditioning Company Vpak 9K-18K BTU/h Models Vpak 9K-18K BTU/h Models Vpak 9K-18K BTU/h Models Vpak 9K-18K BTU/h Models 9K-18K BTU/h Models Vpak Parts List Vpak 24K BTU/h Models Vpak 24K BTU/h Models Vpak 24K BTU/h Models Vpak 24K BTU/h Models 24K BTU/h Models Vpak Parts List Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 45 pages 45.67 Kb Manual 7 pages 15.54 Kb Manual 27 pages 24.75 Kb

R410A specifications

Friedrich R410A is a refrigerant blend that has become a cornerstone in the HVAC industry, particularly for air conditioning systems. This hydrofluorocarbon (HFC) is known for its efficiency and environmentally friendly properties, making it a popular alternative to older refrigerants like R22.

One of the main features of R410A is its exceptional thermal efficiency. It has a higher cooling capacity compared to R22, which allows for smaller and more efficient equipment. This efficiency translates to reduced energy consumption and lower operating costs for users. Additionally, the higher pressure capability of R410A enables the design of more compact systems, which is particularly beneficial for residential and commercial applications where space is often limited.

R410A is characterized by its zero ozone depletion potential (ODP), which is a significant advantage over its predecessors. This makes it a more environmentally responsible choice, aligning with global initiatives to phase out substances that harm the ozone layer. However, it is essential to note that while R410A does not deplete the ozone, it does have a global warming potential (GWP) of approximately 2,088, making it less favorable in terms of climate impact compared to natural refrigerants.

In terms of technology, R410A is typically utilized in systems that are designed specifically for this refrigerant. Equipment compatible with R410A often features advanced components that can handle the higher pressures required. Many modern air conditioning systems equipped with R410A also incorporate variable-speed compressors and advanced electronic controls, enhancing overall performance and comfort.

Additionally, R410A systems often come equipped with variable refrigerant flow (VRF) technology, which allows for precise temperature control in multiple zones of a building. This versatility makes R410A an ideal choice for both residential and commercial installations, providing optimal comfort throughout various spaces.

In summary, Friedrich R410A stands out due to its high energy efficiency, zero ozone depletion potential, and suitability for modern HVAC technologies. As the industry moves towards more sustainable practices, R410A serves as a reliable refrigerant that balances performance with environmental responsibility. It’s a significant choice for anyone looking to invest in efficient and eco-friendly heating and cooling solutions.