Friedrich R410A Sealed Refrigeration System Repairs, Equipment Required, Risk of Electric Shock

Page 25

SEALED REFRIGERATION SYSTEM REPAIRS

IMPORTANT

ANY SEALED SYSTEM REPAIRS TO COOL-ONLY MODELS REQUIRE THE INSTALLATION OF A LIQUID LINE DRIER.

ALSO, ANY SEALED SYSTEM REPAIRS TO HEAT PUMP MODELS REQUIRE THE INSTALLATION OF A SUCTION LINE DRIER.

EQUIPMENT REQUIRED:

1.Voltmeter

2.Ammeter

3.Ohmmeter

4.E.P.A. Approved Refrigerant Recovery System

5.Vacuum Pump (capable of 200 microns or less vacuum.)

6.Acetylene Welder

7.Electronic Halogen Leak Detector capable of detect- ing HFC (Hydrofl uorocarbon) refrigerants.

8.Accurate refrigerant charge measuring device such as:

a.Balance Scales - 1/2 oz. accuracy

b.Charging Board - 1/2 oz. accuracy

9.High Pressure Gauge - (0 - 750 lbs.)

10.Low Pressure Gauge - (30 - 200 lbs.)

11.Vacuum Gauge - (0 - 1000 microns)

12. Facilities for fl owing nitrogen through refrigeration tubing during all brazing processes.

EQUIPMENT MUST BE CAPABLE OF:

1.Recovering refrigerant to EPA required levels.

2.Evacuation from both the high side and low side of the system simultaneously.

3.Introducing refrigerant charge into high side of the system.

4.Accurately weighing the refrigerant charge actually introduced into the system.

WARNING

RISK OF ELECTRIC SHOCK

Unplug and/or disconnect all electrical power to the unit before performing inspections, maintenances or service.

Failure to do so could result in electric shock, serious injury or death.

WARNING

HIGH PRESSURE HAZARD

Sealed Refrigeration System contains refrigerant and oil under high pressure.

Proper safety procedures must be followed, and proper protective clothing must be worn when working with refrigerants.

Failure to follow these procedures could result in serious injury or death.

Refrigerant Charging

Proper refrigerant charge is essential to proper unit opera- tion. Operating a unit with an improper refrigerant charge will result in reduced performance (capacity) and/or effi ciency. Accordingly, the use of proper charging methods during ser- vicing will insure that the unit is functioning as designed and that its compressor will not be damaged.

Too much refrigerant (overcharge) in the system is just as bad (if not worse) than not enough refrigerant (undercharge). They both can be the source of certain compressor failures if they remain uncorrected for any period of time. Quite often, other problems (such as low air fl ow across evaporator, etc.) are misdiagnosed as refrigerant charge problems. The refrigerant circuit diagnosis chart will assist you in properly diagnosing these systems.

An overcharged unit will at times return liquid refrigerant (slugging) back to the suction side of the compressor eventually causing a mechanical failure within the compressor. This mechanical failure can manifest itself as valve failure, bearing failure, and/or other mechanical failure. The specifi c type of failure will be infl uenced by the amount of liquid being returned, and the length of time the slugging continues.

Not enough refrigerant (undercharge) on the other hand, will cause the temperature of the suction gas to increase to the point where it does not provide suffi cient cooling for the compressor motor. When this occurs, the motor winding temperature will increase causing the motor to overheat and possibly cycle open the compressor overload protector. Continued overheating of the motor windings and/or cycling of the overload will eventually lead to compressor motor or overload failure.

24

Image 25
Contents Single Package Vertical Air Conditioning System Table of Contents Your safety and the safety of others are very important Important Safety InformationRefrigeration System Hazards Property Damage Hazards IntroductionSerial Number 00001Year Manufactured Production RUN Number Product LineElectrical Requirements Chassis Specifi cations Cooling Performance Data Technical Service DataQuiet Start/Stop Electronic Control Board FeaturesHeat Mode in Cool with Electric Heat Units Compressor Lock Out Time Electric Shock Hazard Low Voltage Interface ConnectionsCUT/SEVER Hazard ServiceGround Air Intake Vpak 9-18K BTU Units Components IdentificationAir Intake Front Side Vpak 24K BTU Units Components IdentificationError Codes and Alarm Status Components Testing Fuse 10 Amps 250 VaC Capacitor Connections Capacitor Check with Capacitor AnalyzerBlower / FAN Motor Blower / FAN Motor TestDrain PAN Valve Heater Elements and Limit SWITCHES’ SpecificationsExternal Static Pressure Explanation of charts Refrigeration Sequence of Operation Refrigeration AssemblyEquipment Required Sealed Refrigeration System RepairsEquipment Must be Capable Risk of Electric ShockUndercharged Refrigerant Systems Method Of Charging / RepairsBurn Hazard Freeze HazardRestricted Refrigerant System Overcharged Refrigerant SystemsHeating Mode Cooling ModeHermetic Components Check Capillary Tube SystemsReversing Valve DESCRIPTION/OPERATION Touch Test in Heating/Cooling Cycle Procedure For Changing Reversing ValveFire Hazard Single Phase Running and L.R.A. Test Single Phase ConnectionsLocked Rotor Voltage L.R.V. Test Determine L.R.VExternal Overload Vpak 9, 12, 18 K Btus Single Phase Resistance TestInternal Overload Vpak 24 K Btus Ground TestHigh Temperatures Recommended procedure for compressor replacementElectrical Shock Hazard Routine MaintenanceRoom AIR Conditioner Unit Performance Test Data Sheet THERMISTORS’ Resistance Values 9K BTU, 12K BTU, & 18K BTU Electrical Troubleshooting Chart CoolingCompressor outdoor Electrical Troubleshooting Chart Cooling 24K BTUHeat Pump Mode Electrical Troubleshooting Chart Heat PumpTroubleshooting Chart Heating Heat Pump Troubleshooting Chart CoolingHeat Pump with Electric Heat Remote Wall Thermostat Wiring DiagramsGH GL B Y RT6 6TR Cool with Electric HeatGH GL B Y W R GH GL O/B Y W Wiring Diagram Heat Pump EH 5KW, 10.0KW Model Description Photo Friedrich Air Conditioning Company Vpak 9K-18K BTU/h Models Vpak 9K-18K BTU/h Models Vpak 9K-18K BTU/h Models Vpak 9K-18K BTU/h Models 9K-18K BTU/h Models Vpak Parts List Vpak 24K BTU/h Models Vpak 24K BTU/h Models Vpak 24K BTU/h Models Vpak 24K BTU/h Models 24K BTU/h Models Vpak Parts List Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 45 pages 45.67 Kb Manual 7 pages 15.54 Kb Manual 27 pages 24.75 Kb

R410A specifications

Friedrich R410A is a refrigerant blend that has become a cornerstone in the HVAC industry, particularly for air conditioning systems. This hydrofluorocarbon (HFC) is known for its efficiency and environmentally friendly properties, making it a popular alternative to older refrigerants like R22.

One of the main features of R410A is its exceptional thermal efficiency. It has a higher cooling capacity compared to R22, which allows for smaller and more efficient equipment. This efficiency translates to reduced energy consumption and lower operating costs for users. Additionally, the higher pressure capability of R410A enables the design of more compact systems, which is particularly beneficial for residential and commercial applications where space is often limited.

R410A is characterized by its zero ozone depletion potential (ODP), which is a significant advantage over its predecessors. This makes it a more environmentally responsible choice, aligning with global initiatives to phase out substances that harm the ozone layer. However, it is essential to note that while R410A does not deplete the ozone, it does have a global warming potential (GWP) of approximately 2,088, making it less favorable in terms of climate impact compared to natural refrigerants.

In terms of technology, R410A is typically utilized in systems that are designed specifically for this refrigerant. Equipment compatible with R410A often features advanced components that can handle the higher pressures required. Many modern air conditioning systems equipped with R410A also incorporate variable-speed compressors and advanced electronic controls, enhancing overall performance and comfort.

Additionally, R410A systems often come equipped with variable refrigerant flow (VRF) technology, which allows for precise temperature control in multiple zones of a building. This versatility makes R410A an ideal choice for both residential and commercial installations, providing optimal comfort throughout various spaces.

In summary, Friedrich R410A stands out due to its high energy efficiency, zero ozone depletion potential, and suitability for modern HVAC technologies. As the industry moves towards more sustainable practices, R410A serves as a reliable refrigerant that balances performance with environmental responsibility. It’s a significant choice for anyone looking to invest in efficient and eco-friendly heating and cooling solutions.