Lincoln Electric V250-S service manual Perform Power Board Replacement Procedure in this section

Page 83

TOC

TOC

F-51

TROUBLESHOOTING & REPAIR

F-51

 

 

FILTER CAPACITOR REMOVAL AND REPLACEMENT (continued)

Return to Section

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master

Return to Master TOC

Return to Master TOC

Return to Master TOC

7.Once the top of the bracket assem- bly is disengaged from the top center panel the bracket assembly can be removed from the bottom of the case by sliding the bracket assembly towards the front of the machine. The locking tab on the bottom of the bracket will have to be lifted slightly to enable the assembly to slide freely towards the front.

8.With the bracket assembly out of the machine the filter capacitors can be removed by loosening the capacitor clamps and sliding the filter capaci- tors out of the assembly.

Note: Before removing the capaci- tors precisely mark where the capac- itors are positioned in the clamp. This is important so the new capaci- tor terminals will align with the holes in the power board. Also mark

polarity configuration for reassembly purposes.

9.Install the new capacitors taking note of position in the clamp and also polarity location.

10.Using the slot head screwdriver tighten the clamps.

11.Install the heatsink/power board bracket assembly (with new capaci-

tors installed) into the machine by first positioning the bottom of the bracket into the slots in the case bottom and sliding the bracket assembly towards the rear of the machine.

12.Carefully position the top of the heatsink/power board bracket assembly into the top center panel and slide the panel towards the rear of the machine while holding the heatsink/power board mounting bracket in place.

13.Using the 5/16’ nut-driver replace the two screws at the top rear of the case back. See Figure F.15.

14.Using the 5/16” nut-driver replace the two screws at the top front of the case front panel. See Figure F.15.

15.Perform Power Board Replacement Procedure in this section.

INVERTEC V250-S

Image 83
Contents Invertec V250-S Safety Fumes and Gases can be dangerous Electric Shock can killARC Rays can burn Welding Sparks can cause fire or explosion Cylinder may explode if damagedSûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section InstallationThree Phase Technical Specifications Invertec V250-SThree Phase Single Phase Select Suitable Location Safety PrecautionsInput Connections Power Input Connection for 50/60 HZ Machines Input Voltage Reconnect ProcedureInput Fuse and Supply Wire Output Cables Remote Control ReceptacleOutput Connections Quick Disconnect PlugsInvertec V250-S Operation Gouging Sparks Safety InstructionsFigure B.1 Case Front Controls Controls and SettingsTIG Welding Constant Current ProcessesManual ARC Welding Stick AIR Carbon ARC CuttingThermal Protection Parallel OperationOverload Protection Invertec V250-S Table of Contents Accessories Section AccessoriesCable Plugs Options / AccessoriesRemote Controls Table of Contents Maintenance Section MaintenanceFigure D.1 Location of Input Filter Capacitor Terminals Input Filter Capacitor Discharge ProcedureFilter Capacitor Conditioning Routine MaintenanceFigure D.2 Location of Maintenance Components Theory of Operation Table of Contents Theory of Operation SectionInput Line Voltage General DescriptionFigure E.2 Protection and PRE-CHARGE Circuits Precharge and ProtectionFigure E.3 Main Transformer Main TransformerFigure E.4 Output Rectification and Control Output Rectification ControlOverload Protection Protection CircuitsInsulated Gate Bipolar Transistor Igbt Operation Maximum Output Pulse Width ModulationMinimum Output Troubleshooting & Repair Oscilloscope Warning HOW to USE Troubleshooting GuideBoard can be dam- aged by static electricity PC Board Troubleshooting ProceduresCourse of Action Possible Areas Recommended SymptomsPerform the Control Board Voltage Checks Possible AreasCapacitor Balance Test Troubleshooting & Repair Perform the Output Diode Test Welding Problems Invertec V250-S Materials Needed Auxiliary Transformer TestTest Description Auxiliary Transformer Test Test ProcedureTable F.1 Auxiliary Transformer Test Points Auxiliary Transformer TestInvertec V250-S Input Rectifier Test Input Rectifier Test Test ProcedureTest Point Terminals Analog Meter X10 Range Table F.2 Input Rectifier Test PointsInvertec V250-S Power Board Resistance Test Test Description Power Board Resistance TestTable F.3 Power Board Resistance Test Points Power Board Resistance TestInvertec V250-S Output Diodes Test Figure F.4 Machine Output Terminals Output Diodes TestInvertec V250-S Diode Modules Power Board Voltage Test Figure F.8 Plug J6 on Power Board Power Board Voltage TestTest Conditions Table F.4. Power Board Voltage Test PointsAcceptable Test Description Invertec V250-S Control Board Voltage Test Figure F.9 Plugs J1-J5 on Control Board Control Board Voltage Test18VAC Table F.5. Control Board Voltage Test PointsInvertec V250-S Protection Circuit Test Figure F.10 Control Board Plug J2 Test Points Protection Circuit TestProtection Circuit Simplified Invertec V250-S Capacitor Balance Test Capacitor Balance Test Figure F.12 Power Board and Capacitor Test LocationsTable F.6 Capacitor Voltages Invertec V250-S Control Board Removal and Replacement V250S Control Control Board Removal and ReplacementProcedure Power Board Removal and Replacement Figure F.14 Power Board Lead Locations Power Board Removal and ReplacementPower Board Replacement Procedure Invertec V250-S Matched Parts Filter Capacitor Removal and ReplacementFigure F.15 Heatsink/Power Board Removal Filter Capacitor Removal and ReplacementPerform Power Board Replacement Procedure in this section Invertec V250-S Input Rectifier Bridge Removal and Replacement Figure F.16 Input Rectifier Lead Locations Input Rectifier Bridge Removal and ReplacementTroubleshooting & Repair Invertec V250-S Materials Needed Snubber Resistors Locking Tabs Invertec V250-S Wrench Allen type wrench Torque wrench Mounting Bolts Diode Modules Bolted Connections Troubleshooting & Repair Invertec V250-S Main Transformer Removal and Replacement Machine Codes below T3 Current Transformer Main Transformer Main Transformer Secondary Leads Figure F.22 Main Transformer Mountings Clear all leads and secure for case wrap-around assembly Invertec V250-S Main Transformer Removal and Replacement Machine Codes Above Figure F.23 Main Transformer Right Side Figure F.24 Main Transformer Left Side Figure F.25 Main Transformer Mountings Troubleshooting & Repair Invertec V250-S Input Idle Amps and Idle Watts Maximum Acceptable Output AT Minimum Output SettingsMinimum Acceptable Output AT Maximum Output Settings Retest After RepairInvertec V250-S Electrical Diagrams Invertec V250-S Invertec V250S Wiring Diagram Codes 10102Return to Section Wiring Diagram Codes 10187G2666 Control PC Board G2666 LayoutPower P.C. BD. Asbly Power PC Board G2684 LayoutRelay Coils Control PC Board G2666 SchematicFrom Control BD Power PC Board G2684 Schematic