Carrier 39L specifications Wiring of Two-Stage Humidication Control Relays

Page 60

Field Wiring

NOTE: The relay furnished is a SPDT relay with silver cadmium oxide contacts, rated as follows:

48 va at 24 vac and .25 power factor

125 va at 115 vac and .25 power factor

125 va at 230 vac and .25 power factor

Fig. 56 Ð Wiring of Two-Stage Humidi®cation Control Relays

Field Wiring

NOTE: Connections for 39NX with integral PIC shown. See wiring diagrams in Fig. 9 and 12 for terminal connections in 39L control box and all remote-mount control boxes.

Fig. 57 Ð Wiring of the Duct

High Humidity Switch

The 24 vac power source(s) to both duct mounted and wall mounted relative humidity transmitters MUST be isolated. Connecting either side to a ground will per- manently damage the sensor.

The power for the relative humidity transmitters may be sourced from the valve 24 vac power source at wire no. 6 and 7 or at wire no. 4 and 5.

Connect the signal wires as follows: Secure one wire to the terminal labelled OUT 1 (located at the right of terminal block OUT). Secure the other wire to the negative signal output terminal (terminal adjacent to the terminal labelled OUT 1). Run the twisted pair of signal wires to the PIC control box. Observe all local code requirements.

Outdoor Relative Humidity Transmitter: Connect the posi- tive (1) wire to pin 31 of the processor module. Connect the negative (−) wire to pin 32 of the processor module.

Return Air or Space Relative Humidity Transmitter; Connect the positive (1) wire to pin 10 of the processor mod- ule. Connect the negative (−) wire to pin 11 of the processor module. See Fig. 61.

Fig. 58 Ð Field-Installed Relative

Humidity Transmitters

60

Image 60
Contents Installation, Operation, Start-Up Instructions ContentsSafety Considerations InstallationGeneral Page ABX IGVPIC VAVDirect Expansion FMB Ð Filter Mixing BoxMXB Ð Mixing Box Normally ClosedControl Box for Remote Mounting AFS AotcAQ1 AQ2PIC Section Control Box Component Arrangements, 39L PIC Section Control Box Component Arrangement, 39NX Sizes PIC Section Control Box Component Arrangement, 39NX Sizes Page Input and Output Points AddressUnit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Page Page Page Page Page Page Junction Box Connections for Optional Remote Control Box Terminal SignalValve Assembly Typical Hot Water Valve Wiring Chilled Water Valve Wiring Duct Static Pressure ProbeNema Ð National Electrical Manufacturers Association Resistance Temperature OhmsMixed-Air Temperature Sensor HH79NZ021 Installation Enthalpy Control Settings Supply/Return Air Temperature Sensor HH79NZ019COI L Comno Wall-Mounted Relative Humidity Sensor Fig Duct-Mounted Relative Humidity Sensor Locations Air¯ow Switch P/N HK06WC030 CO2 Sensor Accessories CGCDXSEN002A00CGCDXSEN003A00 CGCDXGAS001A00Air Quality CO2 Sensor Wall Mount Version Shown CO2 Concentration PPMOAC Pressure Transducers Recommended Sensor Device Wiring Manufacturer Part NumberProcessor Sensor Module PIN noField Wiring of Sensors Recommended Actuators StrokeField-Supplied Mixing Box Actuator Signal Wiring HAND/OFF/AUTO Switch Tran Ð Transformer High-Pressure Switch Remove JumperEvacuation Supply Fan Contactor Fire Shut Down Terminal BlockPres Single-Pole, Double-Throw Spdt Relay Wiring of Device Under Discrete Output Temperature Control Wiring of Two-Stage Humidication Control Relays Duct Mounted Relative Humidity Transmitter Wiring Air Quality and Oavp Sensor Wiring Wiring of Return Fan Volume Control With IGVs Pulse-Type Meter Wiring Control SystemCCN Communication Wiring AHU Air Handling UnitRelay Module Outdoor Air ThermostatLocal Interface Device Key Usage Function USE KeysOperative USE Keys Status History Schedule Service Set Point Test Functions and SubfunctionsSUB Function Number OavpControl Operation Operation Keyboard Display Description EntryKeyboard Directory StatusInputs VAV Direct Expansion Oavp Ð Outside Air Velocity Pressure AIRQUAL1 SET Point Quick Test History Example 1 Ð Reading Alarm Codes Example 2 Ð Reading Current Operating ModesKeyboard Display Comments Entry Response Alarms Display CodesForce States Display DescriptionState of Items Controlled Example 3 Ð Forcing An Input ValueExample 4 Ð Forcing An Output Value Relay StagesExample 5 Ð Using Quick Test Example 6 Ð Logging On and Logging Off Service FunctionKeyboard Display Comments Entry Response To LOG on To LOG OFFService Conguration Ranges and Defaults Analog Output Temperature Control Example 7 Ð Reading and Changing Factory Congurations Example 8 Ð Conguration of MeasurementsExample 9 Ð User Congurations Example 11 Ð Conguration of Space Temperature Reset Example 10 Ð Conguration of Heating CoilExample 12 Ð Conguration of Loadshed Example 14 Ð Conguration of Alarm Limits Example 15 Ð Conguration of Analog Temperature ControlExample 13 Ð Conguration of Fan Tracking Example 16 Ð Conguration of Discrete Temperature Control Example 17 Ð Service History CongurationExample 18 Ð Service/Maintenance Alarm Conguration Set Point Ranges and DefaultsExample 21 Ð Setting of Time and Date Example 22 Ð Setting Daylight Savings TimeExample 20 Ð Reading and Changing System Set Points Example 23 Ð Setting of Holidays Schedule I Sample Time ScheduleExample 24 Ð Using the Schedule Function Keyboard Display Comment Entry Response Programming PeriodPeriod 1 Dene schedule period For this example, Period 6 is used for holiday only Constant Volume and Variable Air Volume Units Control Operating SequencePage Page MAT Ð Mixed-Air Temperature OAT Ð Outdoor-Air TemperatureIAQ Indoor-Air QualityConstant Volume Units Only CCV Ð Cooling Coil Valve RAT Ð Return-AirDX Submaster Gain Control Operation Variable Air Volume Units Only Page Outside Air OACConstant Outside Air Oavp Ð Outside Air Velocity Pressure102 START-UP Initial CheckTest of Input Signals Keyboard Display COMMENTS/ACTION Entry ResponseKeyboard Display COMMENTS/ACTION Entry Response FSD NRM FollowingTest of Output Signals For Variable Air Volume UnitsTest of Output Options Using Option Module Electric Heater TestControl Loop Checkout Direct Expansion DX Cooling TestDigital DC Volt Meter vs DC Milliamp Meter DC Milliamps DC VoltageValve Troubleshooting Recommended Gain Starting ValvesTypical Linkages Example 25 Ð Forcing An OutputIGV % HCV 10/FORCEDControl Module Troubleshooting Example 26 Ð Heating Coil Valve Test Way Normally OpenExit Test Dsio Unit Troubleshooting Problem Possible Cause Corrective ActionHCV, CCV, IGV IAQ features OAC malfunctioningMalfunctioning Metric Conversion Chart

39L specifications

The Carrier 39L is a cutting-edge air conditioning unit designed for both residential and commercial applications, providing exceptional cooling and heating performance. Equipped with advanced technologies, this system ensures optimal climate control while maintaining energy efficiency.

One of the standout features of the Carrier 39L is its inverter technology. This innovation allows the system to adjust its compressor speed based on the ambient temperature, which results in a significant reduction in energy consumption. By operating at varying capacities rather than a fixed output, the 39L can maintain a consistent temperature, enhancing comfort while lowering electricity bills.

The Carrier 39L also includes a high-efficiency air filtration system, designed to capture dust, allergens, and other airborne particles. This not only improves indoor air quality but also promotes a healthier living environment. The filtration system is complemented by anti-bacterial treatment, ensuring that the air circulated within your space is both clean and refreshing.

In terms of design, the Carrier 39L boasts a sleek and compact form factor, making it easy to integrate into various settings, from homes to offices. Its quiet operation is another notable feature, as it minimizes noise levels, allowing occupants to enjoy a serene atmosphere without disruptive sound.

Further enhancing convenience, the Carrier 39L comes equipped with smart connectivity options. Users can control the unit remotely via a smartphone app, making it easy to adjust settings, program schedules, and monitor energy usage from anywhere. This feature not only improves user experience but also supports energy-saving practices.

Durability is also a key characteristic of the Carrier 39L. Constructed with high-quality materials and coated with corrosion-resistant treatments, the unit is built to withstand various environmental conditions. This ensures long-lasting performance and reduces the need for frequent maintenance.

Overall, the Carrier 39L is a versatile, efficient, and user-friendly air conditioning solution. Its blend of advanced technologies, energy-saving capabilities, and robust design makes it an ideal choice for those seeking reliable climate control in their spaces. Whether for residential comfort or commercial necessity, the Carrier 39L stands out as a leader in modern air conditioning.