Carrier 39L specifications CCN Communication Wiring

Page 65

Fig. 69 Ð CCN Communication Wiring

All system software and operating intelligence is in the processor (PSIO master) module, which controls the unit. This module monitors and controls conditions through input and output ports and through the option (PSIO slave) and relay (DSIO) modules.

The machine operator communicates with the PSIO mas- ter through the local interface device (HSIO). Communica- tions between the PSIO and other modules is accomplished by a 3-wire sensor bus that runs in parallel between mod- ules. See Fig. 73.

On the sensor bus terminal strips, terminal 1 of the PSIO module is connected to terminal 1 of each of the other mod- ules (see Fig. 73). Terminals 2 and 3 are connected in the same manner. If a terminal 2 wire is connected to terminal 1, the system does not work.

The PSIO master and slave and DSIO are all powered from a 21 vac power source connected to terminals 1 and 2 of the power input connector on each module. Refer to the 39L or 39NX unit wiring diagram for transformer locations and wiring.

Processor (PSIO Master) and Option (PSIO Slave) Modules (Fig. 71) Ð The PSIO master module moni- tors and controls components such as the supply fan, cool- ing and heating coil valves, inlet guide vanes, and mixed-air dampers. The PSIO slave module provides additional inputs and outputs to the PSIO master for options such as return fan volume, humidi®er, smoke, and air quality control. The processor and option modules are factory installed.

Each PSIO input and output channel has 3 terminals; only 2 of the terminals are used. The unit application de- termines the terminal connections. Refer to the unit wiring diagram for terminal numbers.

The PSIO address switches are factory set at address 01 (master) and 31 (slave). Use a local or remote HSIO or the CCN to change the unit address. Do NOT change the address switches on the PSIO modules.

Relay (DSIO) Module (Fig. 72) Ð The DSIO mod- ule provides additional inputs and outputs to the PSIO mas- ter for electric heater and direct expansion coil staging. The DSIO module is factory installed. If only one DSIO module is used for electric heat or DX cooling, the DSIO address switches are factory-set at 19. If 2 DSIO modules are used for electric heat and DX cooling, the heat module is set to address 19 and the cooling module is set to address 49. See Table 1.

The DSIO inputs on strip J3 are discrete (ON/OFF) in- puts. When 24 vac are applied across the 2 terminals, the corresponding channel reads one state. When no power is applied across the terminals, the channel reads the opposite state.

IMPORTANT: The 24 vac inputs on J3 of the DSIO module are polarized, with one side tied to earth ground. The grounded side of the signal must be connected to the even-number pins.

Terminal strips J4 and J5 are internal relays whose coils are powered on and off by a signal from the microprocessor. The relays switch the circuit to which they are connected. Only Class II power should be applied to these connections.

IMPORTANT: Use only the normally-open contacts on DSIO modules. These contacts have internal snub- bers that protect the control modules from destructive arcing produced by switching inductive loads. NEVER use the normally-closed contacts.

65

Image 65
Contents Contents Installation, Operation, Start-Up InstructionsGeneral Safety ConsiderationsInstallation Page IGV ABXPIC VAVFMB Ð Filter Mixing Box Direct ExpansionMXB Ð Mixing Box Normally ClosedControl Box for Remote Mounting Aotc AFSAQ1 AQ2PIC Section Control Box Component Arrangements, 39L PIC Section Control Box Component Arrangement, 39NX Sizes PIC Section Control Box Component Arrangement, 39NX Sizes Page Address Input and Output PointsUnit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39L Sizes 03-35 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 07-21 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Unit Wiring Schematic, 39NX Sizes 26-92 115 v, Typical Page Page Page Page Page Page Terminal Signal Junction Box Connections for Optional Remote Control BoxValve Assembly Typical Hot Water Valve Wiring Duct Static Pressure Probe Chilled Water Valve WiringNema Ð National Electrical Manufacturers Association Ohms Resistance TemperatureMixed-Air Temperature Sensor HH79NZ021 Installation Supply/Return Air Temperature Sensor HH79NZ019 Enthalpy Control SettingsCOI L Comno Wall-Mounted Relative Humidity Sensor Fig Duct-Mounted Relative Humidity Sensor Locations Air¯ow Switch P/N HK06WC030 CGCDXSEN002A00 CO2 Sensor AccessoriesCGCDXSEN003A00 CGCDXGAS001A00CO2 Concentration PPM Air Quality CO2 Sensor Wall Mount Version ShownOAC Pressure Transducers Manufacturer Part Number Recommended Sensor Device WiringProcessor Sensor Module PIN noField Wiring of Sensors Stroke Recommended ActuatorsField-Supplied Mixing Box Actuator Signal Wiring High-Pressure Switch Remove Jumper HAND/OFF/AUTO Switch Tran Ð TransformerEvacuation Supply Fan Contactor Fire Shut Down Terminal BlockPres Single-Pole, Double-Throw Spdt Relay Wiring of Device Under Discrete Output Temperature Control Wiring of Two-Stage Humidication Control Relays Duct Mounted Relative Humidity Transmitter Wiring Air Quality and Oavp Sensor Wiring Wiring of Return Fan Volume Control With IGVs Control System Pulse-Type Meter WiringCCN Communication Wiring Air Handling Unit AHURelay Module Outdoor Air ThermostatOperative USE Keys Local Interface Device Key UsageFunction USE Keys Functions and Subfunctions Status History Schedule Service Set Point TestSUB Function Number OavpOperation Keyboard Display Description Entry Control OperationStatus Keyboard DirectoryInputs VAV Direct Expansion Oavp Ð Outside Air Velocity Pressure AIRQUAL1 SET Point Quick Test History Keyboard Display Comments Entry Response Example 1 Ð Reading Alarm CodesExample 2 Ð Reading Current Operating Modes Display Codes AlarmsForce States Display DescriptionExample 3 Ð Forcing An Input Value State of Items ControlledExample 4 Ð Forcing An Output Value Relay StagesExample 6 Ð Logging On and Logging Off Service Function Example 5 Ð Using Quick TestKeyboard Display Comments Entry Response To LOG on To LOG OFFService Conguration Ranges and Defaults Analog Output Temperature Control Example 9 Ð User Congurations Example 7 Ð Reading and Changing Factory CongurationsExample 8 Ð Conguration of Measurements Example 12 Ð Conguration of Loadshed Example 11 Ð Conguration of Space Temperature ResetExample 10 Ð Conguration of Heating Coil Example 13 Ð Conguration of Fan Tracking Example 14 Ð Conguration of Alarm LimitsExample 15 Ð Conguration of Analog Temperature Control Example 17 Ð Service History Conguration Example 16 Ð Conguration of Discrete Temperature ControlExample 18 Ð Service/Maintenance Alarm Conguration Set Point Ranges and DefaultsExample 20 Ð Reading and Changing System Set Points Example 21 Ð Setting of Time and DateExample 22 Ð Setting Daylight Savings Time Schedule I Sample Time Schedule Example 23 Ð Setting of HolidaysPeriod 1 Dene schedule period Example 24 Ð Using the Schedule FunctionKeyboard Display Comment Entry Response Programming Period For this example, Period 6 is used for holiday only Control Operating Sequence Constant Volume and Variable Air Volume UnitsPage Page OAT Ð Outdoor-Air Temperature MAT Ð Mixed-Air TemperatureIAQ Indoor-Air QualityConstant Volume Units Only RAT Ð Return-Air CCV Ð Cooling Coil ValveDX Submaster Gain Control Operation Variable Air Volume Units Only Page OAC Outside AirConstant Outside Air Oavp Ð Outside Air Velocity Pressure102 Initial Check START-UPKeyboard Display COMMENTS/ACTION Entry Response Test of Input SignalsFollowing Keyboard Display COMMENTS/ACTION Entry Response FSD NRMFor Variable Air Volume Units Test of Output SignalsElectric Heater Test Test of Output Options Using Option ModuleDirect Expansion DX Cooling Test Control Loop CheckoutDigital DC Volt Meter vs DC Milliamp Meter DC Milliamps DC VoltageRecommended Gain Starting Valves Valve TroubleshootingExample 25 Ð Forcing An Output Typical LinkagesIGV % HCV 10/FORCEDExit Test Control Module TroubleshootingExample 26 Ð Heating Coil Valve Test Way Normally Open Dsio Problem Possible Cause Corrective Action Unit TroubleshootingHCV, CCV, IGV Malfunctioning IAQ featuresOAC malfunctioning Metric Conversion Chart

39L specifications

The Carrier 39L is a cutting-edge air conditioning unit designed for both residential and commercial applications, providing exceptional cooling and heating performance. Equipped with advanced technologies, this system ensures optimal climate control while maintaining energy efficiency.

One of the standout features of the Carrier 39L is its inverter technology. This innovation allows the system to adjust its compressor speed based on the ambient temperature, which results in a significant reduction in energy consumption. By operating at varying capacities rather than a fixed output, the 39L can maintain a consistent temperature, enhancing comfort while lowering electricity bills.

The Carrier 39L also includes a high-efficiency air filtration system, designed to capture dust, allergens, and other airborne particles. This not only improves indoor air quality but also promotes a healthier living environment. The filtration system is complemented by anti-bacterial treatment, ensuring that the air circulated within your space is both clean and refreshing.

In terms of design, the Carrier 39L boasts a sleek and compact form factor, making it easy to integrate into various settings, from homes to offices. Its quiet operation is another notable feature, as it minimizes noise levels, allowing occupants to enjoy a serene atmosphere without disruptive sound.

Further enhancing convenience, the Carrier 39L comes equipped with smart connectivity options. Users can control the unit remotely via a smartphone app, making it easy to adjust settings, program schedules, and monitor energy usage from anywhere. This feature not only improves user experience but also supports energy-saving practices.

Durability is also a key characteristic of the Carrier 39L. Constructed with high-quality materials and coated with corrosion-resistant treatments, the unit is built to withstand various environmental conditions. This ensures long-lasting performance and reduces the need for frequent maintenance.

Overall, the Carrier 39L is a versatile, efficient, and user-friendly air conditioning solution. Its blend of advanced technologies, energy-saving capabilities, and robust design makes it an ideal choice for those seeking reliable climate control in their spaces. Whether for residential comfort or commercial necessity, the Carrier 39L stands out as a leader in modern air conditioning.