HP UX Fortran Software manual Using options to control optimization, Prof, $ f90 +O4 file.f90

Page 90

prof

The profprofiler can also be used for profiling. Unlike the gprofprofiler, prof does not generate the call graph profile. To use prof, do the following:

1.Compile the program with the +prof option. For example: $ f90 -o prog +prof prog.f90

2.Run the program. This creates a file named mon.out in the current directory. For example: $ prog$ ls mon.outmon.out

3.Run prof, giving the name of the program as an argument, as follows: $ prof prog

profproduces a listing on standard output showing the time spent in each routine.

For more information about prof, see the prof((1))man page.

Using options to control optimization

HPFortranincludes a rich set of command-line options for controlling optimization. For most applications, we recommend optimizing with -O, which enables the default level of optimization. (For information about the default level of optimization, refer to Table on page 149; look up +O2 in the first column.) You can raise or lower the level of optimization with the +Oopt-leveloption, and you can use the +Ooptimizationoption to control the kinds of optimizations that are available at each level.

The following sections describe how to use the +Oopt-leveland +Ooptimizationoptions. For detailed descriptions of the optimization options, see the HPFortranProgrammer’s Reference.

Using +O to set optimization levels

HP Fortran provides four levels of optimization. Each higher level is a superset of the lower levels; level 4 is the highest level and can result in a significant increase in program performance. Level 2 is the default level of optimization.

You invoke optimization by compiling with the +Oopt-leveloption, where opt-levelis an integer in the range 0 - 4. The following command line invokes the optimizer at the highest level:

$ f90 +O4 file.f90

You can invoke level 2 (the default level) by specifying the -Ooption.

Table6-1 summarizes each level, giving the option that invokes that level, the advantages, disadvantages, and recommended usages. For technical information about the specific optimizations at each level, see the HP PA-RISC Compiler Optimization Technology White Paper. A PostScript version of this document is available online in /opt/langtools/newconfig/white_papers/ optimize.ps.

NOTE: You can debug programs optimized up to level 2. To prepare an optimized program for debugging, use the command line:

$ f90 -g +Oopt-level prog.f90

Table 27 Optimization levels

 

Optimizations

 

 

 

Option

performed

Advantages

Disadvantages

Recommended use

+O0default

Constant folding and

Compiles fastest;

Does very little

During program development.

 

partial evaluation of

compatible with the

optimization.

 

 

test conditions.

debugger option -g.

 

 

+O1

Level 0

Produces faster

Compiles slower

During program development.

 

optimizations, plus

programs than level 0;

than level 0.

 

90 Performance and optimization

Image 90
Contents HP Fortran Programmer Guide AbstractPage Contents Debugging Using the on statementControlling data storage Performance and optimizationCalling C routines from HP Fortran 110 Using Fortran directives 123Writing HP-UX applications 107 Migrating to HP Fortran 131Fortran 2003 Features 151 Porting to HP Fortran 141Documentation Feedback 153 Glossary 154 Index 159 HP secure development lifecycle An overview of HP Fortran HP Fortran compiler environmentAn overview of HP Fortran +dryrun DriverOptions for controlling the f90 driver +preinclude= filePreprocessor Options for controlling the C preprocessorFront-end Options for controlling the front end+moddir=directory Back-end Options for controlling optimizationOptimization Options for controlling code generation+Onooptimization +DAmodelLinker Options for controlling the Linker+FPflags LdirectoryOoutfile Tools HP-UX operating systemWl ,options Compiling and linking Compiling with the f90 commandF90 command syntax $ f90 hello.f90Command-line options Command-line optionsF90 command syntax Example 2 hello.f90Commonly-used options Command-line options by categoryCommonly-used options +saveOption descriptions Options listed by categoryExample 3 Example Do I+1, N+allowunaligned +autodbl +autodbl4 Data type sizes and +autodbl414164 Boption+check=bounds +cpp=default+charlit77 +nocfc+DDdatamodel Name=def+DAmodel DatamodelareItanium2 BlendedItanium NativeValues for the +FP option Signals recognized by the +fpexception option Gformat77+hugecommon Example 4 % f90 +hugecommon=results pcvals.f90 +initheapcomplex=rvalival /usr/include directory +noimplicitnone+indirectcommonlist=file +initheapinteger=ival+nocheckuf +io77Ipo +nolibsWith different values of optlevel Levels of optimizationRequires concurrent use of the +Oprofile=use option +noobjdebug+pa1 +r8 +demandload option. The default is +nodemandload+nodemandload the default +realconstant=singleF90com Tx,pathTp,/usr/ccs/lbin/cpp End.oWx,arg1,arg2,...,argN Bextern =symbol ,symbol Symbol binding optionsBdefault=symbol,symbol Bhidden =symbol ,symbolUsing optimization options Reviewing general optimization optionsF90 +O3 +Osize myprog.f90 +Onoautopar +Oconservative+Onoall +Oautopar and omit +OparallelFine-tuning optimization options F90 +O3 +Onomoveflops +Ofltacc myprog.f90+Ocachepadcommon option Default is +OnocxlimitedrangeDefault is +Odataprefetch +Onocxlimitedrange+Onoentrysched +Onofenvaccess+Onofastaccess +OnofailsafeOptimizations performed by +Onofltacc +Onoinlinefilename +Oinlinebudget=n +Oinlinebudget enables+Onoinline +Onoinline=function1,function2Values for the +Oinlinebudget option Millicode versions of intrinsic functions+Oloopunroll=4 +inlinelevel num+Onoloopunroll=factor +Onoloopunrolljam+Onoparmsoverlap Default is+Onoparmsoverlap+Oparallelintrinsics +OnopipelineDefault is +Oshortdata=8 Default is +Onopromoteindirectcalls+Onorecovery For +Oprofile=collectarc,strideFilenames Filenames recognized by f90Linking HP Fortran programs Linking with f90 vs. ldLinking to libraries Libraries linked by default on PA-RISCLibraries linked by default on Itanium $ f90 -c hello.f90 # compileLinking to nondefault libraries Linking HP Fortran 90 routinesAdditional HP Fortran libraries Linking to shared librariesOpt/fortran90/lib/pa2064/ -lF90 -lisamstub Library search rules Special-purpose compilationsCompiling programs with modules $ f90 -Wl,-a,archive prog.f90 -lmSpecial-purpose compilations Example 6 Example 2-2 main.f90 ExamplesExample Example 7 Example 2-3 code.f90$ f90 -o dostats data.f90 code.f90 main.f90 Compiling with makeExample 8 Example 2-4 data.f90 $ dostatsExample 9 Example 2-5 makefile Compiling for different PA-RISC machinesManaging .mod files $ makeCreating shared libraries Compiling with +picUsing the C preprocessor Linking with -bExample 13 Example 2-9 cppdirect.f90 Using the C preprocessorProcessing cpp directives $ f90 +cpp=yes -D Debug cppdirect.f90Creating demand-loadable executables Creating shared executablesSaving the cpp output file $ f90 +noshared prog.f90 Compiling in 64-bit modeUsing environment variables HP Fortran environment variablesHPF90OPTS environment variable F90ROOT environment variableSTF90COM64 environment variable $ f90 +list hello.f90Lpath environment variable Floating installationFloating installation Mpnumberofthreads environment variableSetting up floating installation Alternate-path/opt/fortran90.3.6.1Automatic and static variables Controlling data storageDisabling implicit typing Disabling implicit typingContains Controlling data storageIncreasing the precision of constants Increasing default data sizes Increasing default data sizesIncreasing default data sizes Sharing data among programs Usr/lib/libpthread.slWhich creates multiple threads $ gotosleep Sharing data among programsModules vs. common blocks $ wakeupIm up Modules vs. common blocks Using the HP WDB debugger DebuggingStripping debugging information Handling runtime exceptions Signals recognized by +fpexceptionSignal Floating-point exceptionsBus error exception Floating-point exceptions= 1.0/0.0 Illegal instruction exception Segmentation violation exceptionUsing debugging lines Bad argument exceptionOn REAL8 DIV 0 Call divzerotrap Using the on statementExceptions handled by the on statement Exceptions handled by the on statementActions specified by on On Double Precision DIV 0 Call divzerotrapExceptions handled by the on statement Example 14 Example5-1 abort.f90 Ignoring errorsTerminating program execution Example 15 Example5-2 ignore.f90Trapping integer overflow exceptions Calling a trap procedureTrapping floating-point exceptions On Double Precision Overflow Call trapTrapping +Ctrl-C trap interrupts Allowing core dumpsExample 17 Example5-4 callitrap.f90 Example 18 Example 5-5 allowcore.f90 On Real Overflow IgnorePerformance and optimization Using profilersUsing profilers HP CaliperProgram.c Comparing Program PerformanceOpt/ansic/bin/cc -Aa +O3 -o program +Oprofile=collect ProgramprogramargumentsSpecifying PBO file names and locations Using Options to Control Data CollectionGprof $ gprof prog gprof.outProf Using options to control optimizationUsing +O to set optimization levels $ f90 +O4 file.f90+O3 Using the optimization options+O2, -O +O4$ f90 +O4 +Oaggressive +Ofltacc prog.f90 Fine-tuning optimization options$ f90 +02 +Oaggressive +Osize prog.f90 Packaged optimization options+O2 Is +Onofastaccess at+Ofastaccess at level +Ofltacc=relaxed+Ofltacc=relaxed . This Fast+Onoinitcheck +Olibcalls +Oinlinelevel num+Onolibcalls +Onoloopunroll=n+Onoparminit +Opipeline+Orecovery +Oshortdata=8 +Oregreassoc+Onoreturn +Ovectorize option onConservative vs. aggressive optimization +Onowholeprogrammode+Owholeprogrammode Compiling for parallel execution Conservative, aggressive, and default optimizationsParallelizing HP Fortran programs F90 +O3 +Oparallel -c x.f90 y.f90 F90 +O3 -c z.f90Conditions inhibiting loop parallelization Performance and parallelizationProfiling parallelized programs Calling routines with side effects parallellizationIndeterminate iteration counts Data dependencesF90 +O3 +Ovectorize prog.f90 Using the +Ovectorize optionVectorization Vector routines called by +OvectorizeSdot Controlling vectorization locallySaxpy VecdmultaddREAL, External sdot Calling Blas library routinesExample 19 Example 6-1 axpy.f90 Industry-wide standard VectorizationControlling code generation for performance $ fprog arg1 another arg Accessing command-line argumentsWriting HP-UX applications Example 20 Example 7-1 getargs.f90Performing I/O using HP-UX system calls Using HP-UX file I/OStream I/O using Fstream Calling HP-UX system and library routinesUsing HP-UX file I/O Obtaining an HP-UX file descriptorCalling C routines from HP Fortran Data typesData type correspondence for HP Fortran and C Size differences between HP Fortran and C data types Unsigned integersLogicals Size differences after compiling with +autodblComplex numbers Complex sqrcomplexCOMPLEX cmxvalExample 21 Example 8-1 passcomplex.f90 Pointers Argument-passing conventionsDerived types Example 22 Example 8-2 sqrcomplex.cVoid fooint *ptr, int iarray100, int Integer ptr INTEGER, DIMENSION100 iarrayCase sensitivity Call foo%REFptr, %REFiarray, %VALiExample 24 Example 8-4 testsort.f90 Example 23 Example 8-3 sortem.c$HP$ Alias bubblesort = BubbleSort%REF,%VAL Case sensitivityArrays Memory layout of a two-dimensional array in Fortran and CREAL, DIMENSION2,3,4 IntExample 25 Example 8-5 passarray.f90 Example 26 Example 8-6 getarray.cFortran hidden length argument StringsNull-terminated string Passing a stringFollowing are example C and Fortran programs StringsFile handling Example 27 Example 8-7 passchars.f90Example 28 Example 8-8 getstring.c Example 29 Example 8-9 fnumtest.f90 File handlingExtern int somedata Sharing dataInt somedata Extern int globals100Directive syntax Using Fortran directivesUsing HP Fortran directives HP Fortran directives$HP$ Alias name = external-name arg-pass-mode-list SyntaxDescription and restrictions NameLocal and global usage Case sensitivityArgument-passing conventions Example 31 Example 9-1 prstr.c StringsFor more information Example 32 Example 9-2 passstr.f90Example 33 Example Disables the inclusion of source lines in the listing fileSpecified on the command line Listing fileCompatibility directives recognized by HP Fortran Compatibility directivesControlling vectorization Vendor Directive CrayControlling checks for side effects Controlling parallelizationControlling dependence checks Compatibility directivesUsing Fortran directives Incompatibilities with HP Fortran Command-line options not supportedMigrating to HP Fortran Compiler limitsIntrinsic functions Format field widthsFloating-point constants Double Precision x =Procedure calls and definitions Data types and constantsFoo**REALbar, 8 ! foo**bar Input/outputDirectives KEY=Migration issues Migration issuesSource code issues MiscellaneousDirectives HP Fortran 77 directives supported by f90 optionsConflicting intrinsics and libU77 routine names Command-line option issuesIntrinsic functions F77 options supported by f90Object code issues Data file issuesApproaches to migration HP-supplied migration tools$ fid +800 file.f $ fid +es program.f Compatibility statements Porting to HP FortranCompatibility extensions END structure definitionPointer Cray-style Compiler directivesCompatibility directives +Oparallel orDirective prefixes recognized by HP Fortran Intrinsic proceduresNonstandard intrinsic procedures in HP Fortran +Oparallel or +OvectorizeUsing porting options Uninitialized variablesOne-trip do loops Using porting optionsLarge word size $ f90 testloop.f90Name conflicts Example 34 Example 11-1 clash.f90External int1 Names with appended underscores Source formatsPorting from Tru64 to HP Fortran Escape sequences+cfc Nof66alternate for +noonetrip EnhancementsNew options Porting from Tru64 to HP FortranCheck noboundsoptions for example, -nocheckbounds +nopadsrc AltparamInput/output enhancements Fortran 2003 FeaturesInteroperability with C Miscellaneous enhancementsObject orientation features Fortran 2003 FeaturesData enhancements Documentation Feedback 153Glossary GlossarySo on. See also row-major order 155Also filename extension Memory fault 157See ttv Symbols Index159