HP UX Fortran Software manual Increasing the precision of constants

Page 69

stat_val = 1 auto_val = 124 stat_val = 2 auto_val = 1 stat_val = 3 auto_val = 65 stat_val = 4 auto_val = 65

NOTE: HP Fortran provides the AUTOMATIC and STATIC statements as porting extensions. The STATIC statement is functionally the same as the SAVE statement, and the AUTOMATIC statement may be used to declare a variable as automatic. However, such a declaration is generally pointless because variables compiled under HP Fortran are automatic by default.

The HP Fortran Programmer's Reference provides detailed information about the AUTOMATIC, SAVE, and STATIC statements.

Increasing the precision of constants

By default, HP Fortran evaluates all floating-point constants as single-precision. For example, the compiler treats following constant

3.14159265358979323846

as though you had specified:

3.1415927

Although the loss of precision might be acceptable when assigning to single-precision variables, it is might be less acceptable when assigning to double-precision variables or when using floating-point constants in expressions where the loss in precision might result in significant round-off differences.

NOTE: HP Fortran provides two ways to override the default precision of individual constants: the kind parameter and the exponent form. The kind parameter indicates the precision of floating-point constants: 4 for single-precision, 8 for double-precision, and 16 for quad-precision.

In the following example, the kind parameter _8 specifies that the constant is to be evaluated as double-precision:

3.14159265358979323846_8

To change the precision of all floating-point constants (except those having a kind parameter), you can use the +real_constantoption. This option takes two forms, +real_constant=double and +real_constant=single, which specify (respectively) double-precision and single-precision for floating-point constants in the files compiled with this option. The +real_constant=singleform is the default. Neither form of the option has any affect on constants that have the kind parameter.

To promote all floating-point constants in the source files x.f, y.f, and z.f, compile with the command line:

$ f90 +real_constant=double x.f y.f z.f

The +real_constant=singleoption specifies that all floating-point constants in a file are to be treated as single-precision (the default). The following command line specifies single-precision for all floating-point constants in the files a.f, b.f, andc.f :

$ f90 +real_constant=single a.f b.f c.f

Note that +real_constant=singledoes not demote constants that use either the kind parameter or the exponent form (for example, 4.0D0) .

For information about increasing the precision of variables, see “Increasing default data sizes” (page 70). The HP Fortran Programmer’s Reference describes the syntax of the kind parameter and the exponent form and the +real_constant option. For detailed information about how

Increasing the precision of constants

69

Image 69
Contents Abstract HP Fortran Programmer GuidePage Contents Controlling data storage Using the on statementDebugging Performance and optimizationWriting HP-UX applications 107 Using Fortran directives 123Calling C routines from HP Fortran 110 Migrating to HP Fortran 131Fortran 2003 Features 151 Porting to HP Fortran 141Documentation Feedback 153 Glossary 154 Index 159 HP secure development lifecycle An overview of HP Fortran HP Fortran compiler environmentAn overview of HP Fortran Options for controlling the f90 driver Driver+dryrun +preinclude= fileOptions for controlling the C preprocessor PreprocessorOptions for controlling the front end Front-end+moddir=directory Options for controlling optimization Back-end+Onooptimization Options for controlling code generationOptimization +DAmodelOptions for controlling the Linker Linker+FPflags LdirectoryOoutfile Tools HP-UX operating systemWl ,options F90 command syntax Compiling with the f90 commandCompiling and linking $ f90 hello.f90F90 command syntax Command-line optionsCommand-line options Example 2 hello.f90Commonly-used options Command-line options by categoryCommonly-used options +saveOptions listed by category Option descriptionsExample 3 Example Do I+1, N+allowunaligned 14164 Data type sizes and +autodbl4+autodbl +autodbl4 Boption+charlit77 +cpp=default+check=bounds +nocfc+DAmodel Name=def+DDdatamodel DatamodelareItanium BlendedItanium2 NativeValues for the +FP option Signals recognized by the +fpexception option Gformat77+hugecommon Example 4 % f90 +hugecommon=results pcvals.f90 +indirectcommonlist=file /usr/include directory +noimplicitnone+initheapcomplex=rvalival +initheapinteger=ivalIpo +io77+nocheckuf +nolibsRequires concurrent use of the +Oprofile=use option Levels of optimizationWith different values of optlevel +noobjdebug+pa1 +nodemandload the default +demandload option. The default is +nodemandload+r8 +realconstant=singleTp,/usr/ccs/lbin/cpp Tx,pathF90com End.oWx,arg1,arg2,...,argN Bdefault=symbol,symbol Symbol binding optionsBextern =symbol ,symbol Bhidden =symbol ,symbolUsing optimization options Reviewing general optimization optionsF90 +O3 +Osize myprog.f90 +Onoall +Oconservative+Onoautopar +Oautopar and omit +OparallelF90 +O3 +Onomoveflops +Ofltacc myprog.f90 Fine-tuning optimization optionsDefault is +Odataprefetch Default is +Onocxlimitedrange+Ocachepadcommon option +Onocxlimitedrange+Onofastaccess +Onofenvaccess+Onoentrysched +OnofailsafeOptimizations performed by +Onofltacc +Onoinline +Oinlinebudget=n +Oinlinebudget enables+Onoinlinefilename +Onoinline=function1,function2Millicode versions of intrinsic functions Values for the +Oinlinebudget option+Onoloopunroll=factor +inlinelevel num+Oloopunroll=4 +Onoloopunrolljam+Oparallelintrinsics Default is+Onoparmsoverlap+Onoparmsoverlap +Onopipeline+Onorecovery Default is +OnopromoteindirectcallsDefault is +Oshortdata=8 For +Oprofile=collectarc,strideFilenames recognized by f90 FilenamesLinking with f90 vs. ld Linking HP Fortran programsLibraries linked by default on Itanium Libraries linked by default on PA-RISCLinking to libraries $ f90 -c hello.f90 # compileLinking HP Fortran 90 routines Linking to nondefault librariesAdditional HP Fortran libraries Linking to shared librariesOpt/fortran90/lib/pa2064/ -lF90 -lisamstub Compiling programs with modules Special-purpose compilationsLibrary search rules $ f90 -Wl,-a,archive prog.f90 -lmSpecial-purpose compilations Example ExamplesExample 6 Example 2-2 main.f90 Example 7 Example 2-3 code.f90Example 8 Example 2-4 data.f90 Compiling with make$ f90 -o dostats data.f90 code.f90 main.f90 $ dostatsManaging .mod files Compiling for different PA-RISC machinesExample 9 Example 2-5 makefile $ makeCompiling with +pic Creating shared librariesLinking with -b Using the C preprocessorProcessing cpp directives Using the C preprocessorExample 13 Example 2-9 cppdirect.f90 $ f90 +cpp=yes -D Debug cppdirect.f90Creating demand-loadable executables Creating shared executablesSaving the cpp output file Using environment variables Compiling in 64-bit mode$ f90 +noshared prog.f90 HP Fortran environment variablesSTF90COM64 environment variable F90ROOT environment variableHPF90OPTS environment variable $ f90 +list hello.f90Floating installation Floating installationLpath environment variable Mpnumberofthreads environment variableAlternate-path/opt/fortran90.3.6.1 Setting up floating installationDisabling implicit typing Controlling data storageAutomatic and static variables Disabling implicit typingControlling data storage ContainsIncreasing the precision of constants Increasing default data sizes Increasing default data sizesIncreasing default data sizes Sharing data among programs Usr/lib/libpthread.slWhich creates multiple threads Sharing data among programs $ gotosleepModules vs. common blocks $ wakeupIm up Modules vs. common blocks Using the HP WDB debugger DebuggingStripping debugging information Signal Signals recognized by +fpexceptionHandling runtime exceptions Floating-point exceptionsBus error exception Floating-point exceptions= 1.0/0.0 Segmentation violation exception Illegal instruction exceptionBad argument exception Using debugging linesExceptions handled by the on statement Using the on statementOn REAL8 DIV 0 Call divzerotrap Exceptions handled by the on statementActions specified by on On Double Precision DIV 0 Call divzerotrapExceptions handled by the on statement Terminating program execution Ignoring errorsExample 14 Example5-1 abort.f90 Example 15 Example5-2 ignore.f90Trapping floating-point exceptions Calling a trap procedureTrapping integer overflow exceptions On Double Precision Overflow Call trapTrapping +Ctrl-C trap interrupts Allowing core dumpsExample 17 Example5-4 callitrap.f90 On Real Overflow Ignore Example 18 Example 5-5 allowcore.f90Using profilers Using profilersPerformance and optimization HP CaliperOpt/ansic/bin/cc -Aa +O3 -o program +Oprofile=collect Comparing Program PerformanceProgram.c ProgramprogramargumentsGprof Using Options to Control Data CollectionSpecifying PBO file names and locations $ gprof prog gprof.outUsing +O to set optimization levels Using options to control optimizationProf $ f90 +O4 file.f90+O2, -O Using the optimization options+O3 +O4$ f90 +02 +Oaggressive +Osize prog.f90 Fine-tuning optimization options$ f90 +O4 +Oaggressive +Ofltacc prog.f90 Packaged optimization options+Ofastaccess at level Is +Onofastaccess at+O2 +Ofltacc=relaxed+Ofltacc=relaxed . This Fast+Onoinitcheck +Onolibcalls +Oinlinelevel num+Olibcalls +Onoloopunroll=n+Opipeline +Onoparminit+Orecovery +Onoreturn +Oregreassoc+Oshortdata=8 +Ovectorize option onConservative vs. aggressive optimization +Onowholeprogrammode+Owholeprogrammode Parallelizing HP Fortran programs Conservative, aggressive, and default optimizationsCompiling for parallel execution F90 +O3 +Oparallel -c x.f90 y.f90 F90 +O3 -c z.f90Profiling parallelized programs Performance and parallelizationConditions inhibiting loop parallelization Calling routines with side effects parallellizationData dependences Indeterminate iteration countsVectorization Using the +Ovectorize optionF90 +O3 +Ovectorize prog.f90 Vector routines called by +OvectorizeSaxpy Controlling vectorization locallySdot VecdmultaddExample 19 Example 6-1 axpy.f90 Calling Blas library routinesREAL, External sdot Industry-wide standard VectorizationControlling code generation for performance Writing HP-UX applications Accessing command-line arguments$ fprog arg1 another arg Example 20 Example 7-1 getargs.f90Stream I/O using Fstream Using HP-UX file I/OPerforming I/O using HP-UX system calls Calling HP-UX system and library routinesObtaining an HP-UX file descriptor Using HP-UX file I/OCalling C routines from HP Fortran Data typesData type correspondence for HP Fortran and C Logicals Unsigned integersSize differences between HP Fortran and C data types Size differences after compiling with +autodblComplex numbers Complex sqrcomplexCOMPLEX cmxvalExample 21 Example 8-1 passcomplex.f90 Derived types Argument-passing conventionsPointers Example 22 Example 8-2 sqrcomplex.cCase sensitivity Integer ptr INTEGER, DIMENSION100 iarrayVoid fooint *ptr, int iarray100, int Call foo%REFptr, %REFiarray, %VALi$HP$ Alias bubblesort = BubbleSort%REF,%VAL Example 23 Example 8-3 sortem.cExample 24 Example 8-4 testsort.f90 Case sensitivityREAL, DIMENSION2,3,4 Memory layout of a two-dimensional array in Fortran and CArrays IntExample 26 Example 8-6 getarray.c Example 25 Example 8-5 passarray.f90Null-terminated string StringsFortran hidden length argument Passing a stringStrings Following are example C and Fortran programsFile handling Example 27 Example 8-7 passchars.f90Example 28 Example 8-8 getstring.c File handling Example 29 Example 8-9 fnumtest.f90Int somedata Sharing dataExtern int somedata Extern int globals100Using HP Fortran directives Using Fortran directivesDirective syntax HP Fortran directivesDescription and restrictions Syntax$HP$ Alias name = external-name arg-pass-mode-list NameLocal and global usage Case sensitivityArgument-passing conventions For more information StringsExample 31 Example 9-1 prstr.c Example 32 Example 9-2 passstr.f90Specified on the command line Disables the inclusion of source lines in the listing fileExample 33 Example Listing fileControlling vectorization Compatibility directivesCompatibility directives recognized by HP Fortran Vendor Directive CrayControlling dependence checks Controlling parallelizationControlling checks for side effects Compatibility directivesUsing Fortran directives Migrating to HP Fortran Command-line options not supportedIncompatibilities with HP Fortran Compiler limitsFloating-point constants Format field widthsIntrinsic functions Double Precision x =Data types and constants Procedure calls and definitionsDirectives Input/outputFoo**REALbar, 8 ! foo**bar KEY=Source code issues Migration issuesMigration issues MiscellaneousHP Fortran 77 directives supported by f90 options DirectivesIntrinsic functions Command-line option issuesConflicting intrinsics and libU77 routine names F77 options supported by f90Data file issues Object code issuesHP-supplied migration tools Approaches to migration$ fid +800 file.f $ fid +es program.f Compatibility extensions Porting to HP FortranCompatibility statements END structure definitionCompatibility directives Compiler directivesPointer Cray-style +Oparallel orNonstandard intrinsic procedures in HP Fortran Intrinsic proceduresDirective prefixes recognized by HP Fortran +Oparallel or +OvectorizeUninitialized variables Using porting optionsLarge word size Using porting optionsOne-trip do loops $ f90 testloop.f90Name conflicts Example 34 Example 11-1 clash.f90External int1 Source formats Names with appended underscoresPorting from Tru64 to HP Fortran Escape sequences+cfc New options EnhancementsNof66alternate for +noonetrip Porting from Tru64 to HP Fortran+nopadsrc Altparam Check noboundsoptions for example, -nocheckboundsInteroperability with C Fortran 2003 FeaturesInput/output enhancements Miscellaneous enhancementsObject orientation features Fortran 2003 FeaturesData enhancements 153 Documentation FeedbackGlossary Glossary155 So on. See also row-major orderAlso filename extension 157 Memory faultSee ttv Symbols Index159