Emerson 3000 Split Systems, Prop Fan Air-Cooled, Centrifugal Fan Air-Cooled, Water-Cooled

Page 10

Introduction

1.1.3Split Systems

Each air-cooled split system consists of an evaporator section and one of the following condensing units.

Prop Fan Air-Cooled

Prop Fan units include scroll compressor, condenser coil, prop fan, high pressure switch, hot gas bypass and Liebert Lee-Temp head pressure control. Unit is designed for outdoor location.

Centrifugal Fan Air-Cooled

Centrifugal Fan units include scroll compressor, condenser coil, centrifugal blower assembly, high-pressure switch, hot gas bypass and Liebert Lee-Temp head pressure control. Unit must be mounted indoors. Duct flanges are optional.

Water-Cooled

Each water-cooled split system consists of an evaporator section and a water/glycol condensing unit, which includes scroll compressor, coaxial condenser, water regulating valve, hot gas bypass and high-pressure switch. Design pressure is 150 psi (1034 kPa) as standard and 350 psi (2413 kPa) as optional.

Glycol-Cooled

Each glycol-cooled split system consists of an evaporator section, a water/glycol condensing unit (as described above), a pump package, and a 95°F (35°C) design ambient drycooler.

4

Image 10
Contents Liebert Challenger 3000 with iCOM Page Table of Contents Split System Models Chilled Water ModelsR407C Refrigerant Figures Tables Important Safety Instructions Page System Descriptions Centrifugal Fan Air-Cooled Split SystemsProp Fan Air-Cooled Water-CooledLocation Considerations Room PreparationEquipment Inspection Equipment HandlingRemoval of Skid Unit net weightHandling With Skid Model Lb kgUpflow BU cabinet dimensions Floor Cutout Dimensions Drain Line Piping ConsiderationsPiping connection size Piping Outlet Locations Piping connections for air-cooled units Upflow models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Electrical Connections Facility Fluid and Piping MaintenanceHumidifier Supply Water-Optional Infrared Terminal Block for customer connections Upflow Models with Liebert iCOM Downflow Models with Liebert iCOMUnder-Floor Discharge Systems Plenum InstallationBalancing the Air Distribution Ducted ApplicationsChecklist for Completed Installation Line Voltage Condenser LocationLow Voltage Air-cooled condenser statistics Refrigerant Piping Recommended line sizes OD copper inchesEquivalent lengths feet for various pipe fittings Fan Speed Control SystemsVariable Fan Speed Control Piping Indoor unit refrigerant charge lb kgVariable Fan Speed Control Materials Supplied Fan speed suction pressure transducer settings Variable Fan Speed ChargingFactory Piping Field Piping Factory Piping Liebert Lee-Temp Piping Lee-Temp Leak Check and Evacuation ProcedureLiebert Lee-Temp Controlled Materials Supplied Lee-Temp Receiver Refrigerant Level Lee-Temp suction pressure transducer settingsLee-Temp Charging 407CFactory Piping Optional Piping Pressure Relief Condenser Factory Piping Field Piping Factory Piping Field Piping Adjustment Water Regulating ValveManual Flushing Refrigerant control settings psi kPaMotorized Ball Valve-Digital Scroll Compressors ControlLocation StartupManual Control Drycooler Location Drycooler InstallationPump and Drycooler Glycol Piping General GuidelinesRoom dew point temperatures Dry Bulb Wet Bulb Relative Dew Point HumidityExpansion Tanks, Fluid Relief Valves and Other Devices Volume in standard Type L copper pipingFilling Instructions Preparing the System for FillingGlycol Solutions Ethylene glycol concentrations Filling the System@ 50F 10C See Note 30-1/4 For expansion tank dimensions, see on43-3/16 43-9/16 110 5mm 483mm 1097mmGlycol pump data Mounting hole dimensional dataDrycooler data Pump Pump Suction Pump Discharge ConnectionField Piping General arrangement-Glycol-cooled models with digital scroll Field Piping Factorypiping Field Piping Glycol Regulating Valve Testing Valve FunctionMotor Ball Valve-Digital Scroll Compressors Chilled Water Models WAY Valve Air-Cooled Condensing Units Water/Glycol-Cooled Condensing UnitsRefrigerant Loop Line charges refrigerant per 100 ft m of Type L copper tube Unit refrigerant chargeRecommended refrigerant lines R407C sizes OD copper Line coupling sizes Quick Connect FittingsModel Line Size Coupling Torque Tons OD Cu, Lb-ft Unit Dimensions See Table Outdoor Air-Cooled Condensing UnitsPFCZ42A-L PFCZ41A-L Outdoor air-cooled condensing unit-top air discharge models See Table36-1/4 38-1/2 Piping and electrical connections top air discharge152 Field-supplied unit disconnect switch Ton High Ambient Ton Quiet-LineCentrifugal Air-Cooled Condensing Units Installing the Indoor Condensing UnitModel Net Weight 60 Hz 50 Hz Lb kg MC40A MC39A Indoor centrifugal condensing unitDucting Airflow CFM CMHPiping Connections Rev0 Wire connections from evaporatorDPN000207 ModTon centrifugal air-cooled condensing unit dimensional data AIR Cooled Water Cooled Condenser Water Requirements Water and Glycol-Cooled Condensing UnitsPiping Considerations Regulating ValveGlycol Systems Ton water/glycol-cooled condensing unit24V GND Ton water/glycol-cooled condensing unit dimensional data WATER/GLYCOL Temperature Gauge Pressure Psig KPa R407C RefrigerantCalculating Subcooling Temperature Pressure Gauge Psig KPaExample R407C Refrigerant R407C Refrigerant Page That Ne tIti Ti n Te r Ys t
Related manuals
Manual 88 pages 63.05 Kb Manual 60 pages 24.1 Kb Manual 32 pages 13.16 Kb Manual 22 pages 3.64 Kb Manual 76 pages 17.32 Kb Manual 184 pages 52.9 Kb

3000 specifications

The Emerson 3000 is a cutting-edge control system designed to enhance the efficiency, reliability, and precision of industrial operations. Employed across various sectors such as oil and gas, pharmaceutical, food and beverage, and power generation, the Emerson 3000 has gained recognition for its robustness and versatility.

One of the main features of the Emerson 3000 is its advanced process control capability. With integrated control algorithms, it can optimize complex processes in real-time, resulting in significant improvements in production rates and reduced operational costs. The system's predictive analytics capabilities enable operators to anticipate equipment failures and maintenance needs, allowing for proactive management and minimizing downtime.

The Emerson 3000 features a modular architecture, providing flexibility for scaling and customization. Operators can easily tailor the system to fit specific application needs, whether it requires additional control loops or integration with other systems. This adaptability is particularly beneficial for facilities planning for future expansions or modifications.

Another technology highlight of the Emerson 3000 is its seamless integration with the latest Internet of Things (IoT) advancements. The system is designed to communicate effectively with a variety of smart devices and sensors, harnessing data to create insightful analytics that drive operational excellence. This connectivity empowers businesses to leverage big data for improved decision-making and increased agility.

Additionally, the Emerson 3000 incorporates state-of-the-art cybersecurity measures to safeguard critical data and operations. With built-in security protocols and regular updates, the system protects against emerging cyber threats, ensuring the integrity of the control network.

User experience is also a focal point of the Emerson 3000. The intuitive graphical user interface presents complex data in a user-friendly format, making it easier for operators to monitor system performance and respond to alerts quickly. This ease of use contributes to enhanced safety and operational efficiency.

In summary, the Emerson 3000 represents a fusion of advanced process control, modular design, IoT connectivity, robust cybersecurity, and user-centric interface, making it an ideal choice for industries seeking to enhance their operational performance while adapting to ever-evolving technological landscapes.