Emerson 3000 Centrifugal Air-Cooled Condensing Units, Installing the Indoor Condensing Unit

Page 71

Split System Models

7.5Centrifugal Air-Cooled Condensing Units

7.5.1Installing the Indoor Condensing Unit

Refer to drawings for unit dimensions and component locations.

! WARNING

Risk of heavy unit falling from supports. Can cause equipment and building damage, injury and death.

Be sure the supporting roof structure is capable of supporting the weight of the unit(s) and the accessories during installation and service. (See Table 30 - Indoor centrifugal condensing unit.)

Be sure to securely anchor the top ends of the suspension rods. Make sure all nuts are tight.

The indoor condensing unit is usually mounted above the ceiling and must be securely mounted to the roof structure. The ceiling and ceiling supports of existing buildings may require reinforcements. Be sure to follow all applicable codes. Use field-supplied threaded suspension rods and 3/8"-16 factory hardware kit.

The indoor condensing unit must be located at the same level or above the Liebert Challenger 3000 unit. It must NOT be located below the Liebert Challenger 3000.

Recommended clearance between ceiling grids and building structural members is unit height plus three inches.

Install the four field-supplied rods by suspending them from suitable building structural members. Locate the rods so that they will align with the four mounting holes in the flanges that are part of the unit base.

Using a suitable lifting device, raise the unit up and pass the threaded rods through the four mount- ing holes in the flanges that are part of the unit base.

Attach the threaded rods to the unit flanges using the supplied nuts and grommets. (See Figure 35 - Detail of ceiling hanging bracket, Threaded Rod and Hardware Kit Installation). The rubber grommets provide vibration isolation.

1.Use the plain nuts to hold unit in place. Adjust these nuts so that the weight of the unit is supported evenly by the four rods, does not rest on the ceiling grid, and is level.

NOTE

The units must be level in order to operate properly.

2.Use the Nylock nuts to “jam” the plain nuts.

Table 30 Indoor centrifugal condensing unit

 

Model

Net Weight

 

 

 

60 Hz

 

50 Hz

lb (kg)

 

 

 

 

MC_40A

 

MC_39A

240 (109)

 

 

 

 

MC_65A

 

MC_64A

449 (204)

 

 

 

 

65

Image 71
Contents Liebert Challenger 3000 with iCOM Page Table of Contents R407C Refrigerant Chilled Water ModelsSplit System Models Figures Tables Important Safety Instructions Page System Descriptions Water-Cooled Split SystemsProp Fan Air-Cooled Centrifugal Fan Air-CooledEquipment Handling Room PreparationEquipment Inspection Location ConsiderationsModel Lb kg Unit net weightHandling With Skid Removal of SkidUpflow BU cabinet dimensions Floor Cutout Dimensions Piping connection size Piping ConsiderationsDrain Line Piping Outlet Locations Piping connections for air-cooled units Upflow models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Humidifier Supply Water-Optional Infrared Facility Fluid and Piping MaintenanceElectrical Connections Terminal Block for customer connections Downflow Models with Liebert iCOM Upflow Models with Liebert iCOMDucted Applications Plenum InstallationBalancing the Air Distribution Under-Floor Discharge SystemsChecklist for Completed Installation Low Voltage Condenser LocationLine Voltage Air-cooled condenser statistics Recommended line sizes OD copper inches Refrigerant PipingIndoor unit refrigerant charge lb kg Fan Speed Control SystemsVariable Fan Speed Control Piping Equivalent lengths feet for various pipe fittingsVariable Fan Speed Control Materials Supplied Variable Fan Speed Charging Fan speed suction pressure transducer settingsFactory Piping Field Piping Factory Piping Liebert Lee-Temp Controlled Materials Supplied Lee-Temp Leak Check and Evacuation ProcedureLiebert Lee-Temp Piping 407C Lee-Temp suction pressure transducer settingsLee-Temp Charging Lee-Temp Receiver Refrigerant LevelFactory Piping Optional Piping Pressure Relief Condenser Factory Piping Field Piping Factory Piping Field Piping Water Regulating Valve AdjustmentControl Refrigerant control settings psi kPaMotorized Ball Valve-Digital Scroll Compressors Manual FlushingManual Control StartupLocation Pump and Drycooler Drycooler InstallationDrycooler Location General Guidelines Glycol PipingDry Bulb Wet Bulb Relative Dew Point Humidity Room dew point temperaturesPreparing the System for Filling Volume in standard Type L copper pipingFilling Instructions Expansion Tanks, Fluid Relief Valves and Other DevicesGlycol Solutions @ 50F 10C Filling the SystemEthylene glycol concentrations 483mm 1097mm For expansion tank dimensions, see on43-3/16 43-9/16 110 5mm See Note 30-1/4Pump Pump Suction Pump Discharge Connection Mounting hole dimensional dataDrycooler data Glycol pump dataField Piping General arrangement-Glycol-cooled models with digital scroll Field Piping Factorypiping Field Piping Motor Ball Valve-Digital Scroll Compressors Testing Valve FunctionGlycol Regulating Valve Chilled Water Models WAY Valve Water/Glycol-Cooled Condensing Units Air-Cooled Condensing UnitsRefrigerant Loop Recommended refrigerant lines R407C sizes OD copper Unit refrigerant chargeLine charges refrigerant per 100 ft m of Type L copper tube Model Line Size Coupling Torque Tons OD Cu, Lb-ft Quick Connect FittingsLine coupling sizes Outdoor Air-Cooled Condensing Units Unit Dimensions See TablePFCZ42A-L PFCZ41A-L See Table Outdoor air-cooled condensing unit-top air discharge models152 Piping and electrical connections top air discharge36-1/4 38-1/2 Ton High Ambient Ton Quiet-Line Field-supplied unit disconnect switchIndoor centrifugal condensing unit Installing the Indoor Condensing UnitModel Net Weight 60 Hz 50 Hz Lb kg MC40A MC39A Centrifugal Air-Cooled Condensing UnitsAirflow CFM CMH DuctingPiping Connections Mod Wire connections from evaporatorDPN000207 Rev0Ton centrifugal air-cooled condensing unit dimensional data AIR Cooled Water Cooled Regulating Valve Water and Glycol-Cooled Condensing UnitsPiping Considerations Condenser Water RequirementsTon water/glycol-cooled condensing unit Glycol Systems24V GND Ton water/glycol-cooled condensing unit dimensional data WATER/GLYCOL R407C Refrigerant Temperature Gauge Pressure Psig KPaExample Temperature Pressure Gauge Psig KPaCalculating Subcooling R407C Refrigerant R407C Refrigerant Page Te r Ys t Ne tIti Ti n That
Related manuals
Manual 88 pages 63.05 Kb Manual 60 pages 24.1 Kb Manual 32 pages 13.16 Kb Manual 22 pages 3.64 Kb Manual 76 pages 17.32 Kb Manual 184 pages 52.9 Kb

3000 specifications

The Emerson 3000 is a cutting-edge control system designed to enhance the efficiency, reliability, and precision of industrial operations. Employed across various sectors such as oil and gas, pharmaceutical, food and beverage, and power generation, the Emerson 3000 has gained recognition for its robustness and versatility.

One of the main features of the Emerson 3000 is its advanced process control capability. With integrated control algorithms, it can optimize complex processes in real-time, resulting in significant improvements in production rates and reduced operational costs. The system's predictive analytics capabilities enable operators to anticipate equipment failures and maintenance needs, allowing for proactive management and minimizing downtime.

The Emerson 3000 features a modular architecture, providing flexibility for scaling and customization. Operators can easily tailor the system to fit specific application needs, whether it requires additional control loops or integration with other systems. This adaptability is particularly beneficial for facilities planning for future expansions or modifications.

Another technology highlight of the Emerson 3000 is its seamless integration with the latest Internet of Things (IoT) advancements. The system is designed to communicate effectively with a variety of smart devices and sensors, harnessing data to create insightful analytics that drive operational excellence. This connectivity empowers businesses to leverage big data for improved decision-making and increased agility.

Additionally, the Emerson 3000 incorporates state-of-the-art cybersecurity measures to safeguard critical data and operations. With built-in security protocols and regular updates, the system protects against emerging cyber threats, ensuring the integrity of the control network.

User experience is also a focal point of the Emerson 3000. The intuitive graphical user interface presents complex data in a user-friendly format, making it easier for operators to monitor system performance and respond to alerts quickly. This ease of use contributes to enhanced safety and operational efficiency.

In summary, the Emerson 3000 represents a fusion of advanced process control, modular design, IoT connectivity, robust cybersecurity, and user-centric interface, making it an ideal choice for industries seeking to enhance their operational performance while adapting to ever-evolving technological landscapes.