Intel mPGA604 manual MPGA604 Socket Design Guidelines

Page 2

R

Notice: This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. Contact your local Intel sales office or your distributor to obtain the latest specification before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

All dates are provided for planning purposes only and are subject to change without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The mPGA604 socket may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available upon request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548- 4725, or by visiting Intel's website at http://www.intel.com.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2003, Intel Corporation. All rights reserved.

* Other brands and names may be claimed as the property of others.

2

mPGA604 Socket Design Guidelines

Image 2
Contents MPGA604 Socket MPGA604 Socket Design Guidelines Contents Figures Tables Revision History Re-Validation Notice to Socket Vendors This page intentionally left blank Purpose IntroductionObjective ScopeIntroduction Package Description Assembled Component and Package DescriptionAssembled Component Description Assembled Component and Package Description Materials Mechanical RequirementsMechanical Supports Cutouts for Package RemovalLock Closed and Unlock Open Markings MarkingsName Lot TraceabilitySocket/Package Translation During Actuation Contact CharacteristicsSocket Size Orientation in Packaging, Shipping and HandlingSocket Engagement/Disengagement Force Material and Recycling RequirementsLever Actuation Requirements Visual AidsCritical-to-Function Dimensions Socket Critical-to-Function DimensionsThis page intentionally left blank Electrical Requirements Electrical Requirements for SocketsElectrical Resistance Methodology for Measuring Total Electrical ResistanceElectrical Resistance Fixtures Superimposed Electrical Requirements Daisy Determination of Maximum Electrical Resistance InductanceDesign Procedure for Inductance Measurements Inductance Measurement Fixture Cross-SectionCorrelation of Measurement and Model Data Inductance Measurement StepsInsulation Resistance Pin-to-Pin CapacitanceDielectric Withstand Voltage Contact Current RatingThis page intentionally left blank Environmental Requirements Use Conditions EnvironmentSolvent Resistance Porosity TestPlating Thickness SolderabilityDurability This page intentionally left blank Validation Testing Requirements Mechanical Samples Quality Assurance RequirementsSocket Test Plan Socket Validation NotificationSafety Requirements Safety Requirements Documentation Requirements Documentation Requirements Figure A-1 .5 mm, 604-Pin Package Assembly Drawing Sheet 1 Appendix aFigure A-2 .5 mm, 604-Pin Package Assembly Drawing Sheet 2 Figure A-3 .5 mm, 604-Pin Package Assembly Drawing Sheet 3 Appendix a Figure A-5. mPGA604 Socket Drawing Sheet 2 Figure A-6. mPGA604 Socket Drawing Sheet 3 Figure A-7 -Pin Interposer Assembly Drawing Sheet 1 Figure A-8 -Pin Interposer Assembly Drawing Sheet 2 Figure A-9 -Pin Interposer Assembly Drawing Sheet 3 Figure A-10 -Pin Interposer Assembly Drawing Sheet 4 Figure A-11 -Pin Interposer Assembly Drawing Sheet 5 Figure A-12 -Pin Interposer Assembly Drawing Sheet 6 Figure A-13 -Pin Interposer Assembly Drawing Sheet 7 This page intentionally left blank

mPGA604 specifications

The Intel mPGA604 is a prominent socket specification that has become synonymous with performance in the realm of computing. Designed primarily for users requiring substantial processing power, the mPGA604 socket hosts a variety of Intel processors, notably including the Pentium II and Pentium III series, along with Xeon chips in various configurations. The integration of this technology has facilitated the development of powerful computing machines aimed at both enterprise and individual users.

One of the main features of the mPGA604 socket is its pin grid array configuration, which offers a secure mount for processors. This design allows for efficient heat dissipation and improved electrical connectivity, essential for maintaining the performance of high-end CPUs. The mPGA604 uses 604 pins that create a robust connection, allowing for stable and consistent data transfer between the CPU and the motherboard.

Another significant characteristic of mPGA604 is its support for a range of processor clock speeds and voltage specifications. The socket is integrated with technologies like Intel's SpeedStep, which dynamically adjusts the processor's voltage and frequency according to the workload. This helps in managing power consumption and heat generation, which is critical for longevity and reliability in computing systems.

The mPGA604 also introduces features like Multiple Processor support, enabling systems to leverage dual or even quad-processor configurations effectively. This capability significantly enhances computational performance, making the socket an excellent choice for server applications and high-performance workstations.

Moreover, the socket supports advanced memory technologies, such as SDRAM and RDIMM, allowing for flexible memory configurations tailored to specific performance needs. The ability to utilize dual-channel memory architectures maximizes throughput, facilitating improved application performance and system responsiveness.

In conclusion, the Intel mPGA604 socket represents a well-engineered solution catering to users seeking enhanced processing power and efficiency. Its combination of a robust pin configuration, power management technologies, multiple processor support, and compatibility with advanced memory standards makes it an indispensable choice for performance-driven computing solutions in both personal and professional environments. As computing demands continue to evolve, the mPGA604 stands as a testament to Intel's commitment to innovation and adaptability in the technology landscape.