CY7C1317CV18, CY7C1917CV18
CY7C1319CV18, CY7C1321CV18
Document Number: 001-07161 Rev. *D Page 6 of 31
Pin Definitions
Pin Name IO Pin Description
DQ[x:0] Input Output-
Synchronous Data Input Output Signals. Inputs are sampled on the rising edge of K and K clocks during valid write
operations. These pins drive out the requested data during a read operation. Valid data is driven out on
the rising edge of both the C and C clocks during read operations or K and K when in single clock mode.
When read access is deselected, Q[x:0] are automatically tri-stated.
CY7C1317CV18 DQ[7:0]
CY7C1917CV18 DQ[8:0]
CY7C1319CV18 DQ[17:0]
CY7C1321CV18 DQ[35:0]
LD Input-
Synchronous Synchronous Load. This input is brought LOW when a bus cycle sequence is defined. This definition
includes address and read/write direction. All transactions operate on a burst of 4 data (two clock periods
of bus activity).
NWS0,
NWS1
Input-
Synchronous Nibble Write Select 0, 1 Active LOW (CY7C1317CV18 only). Sampled on the rising edge of the K
and K clocks during write operations. Used to select which nibble is written into the device during the
current portion of the write operations. Nibbles not written remain unaltered.
NWS0 controls D[3:0] and NWS1 controls D[7:4].
All the Nibble Write Selects are sampled on the same edge as the data. Deselecting a Nibble Write Select
ignores the corresponding nibble of data and it is not written into the device.
BWS0,
BWS1,
BWS2,
BWS3
Input-
Synchronous Byte Write Select 0, 1, 2, and 3 Active LOW. Sampled on the rising edge of the K and K clocks during
write operations. Used to select which byte is written into the device during the current portion of the Write
operations. Bytes not written remain unaltered.
CY7C1917CV18 BWS0 controls D[8:0]
CY7C1319CV18 BWS0 controls D[8:0] and BWS1 controls D[17:9].
CY7C1321CV18 BWS0 controls D[8:0], BWS1 controls D[17:9], BWS2 controls D[26:18] and BWS3 controls
D[35:27].
All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select
ignores the corresponding byte of data and it is not written into the device.
A, A0, A1 Input-
Synchronous Address Inputs. These address inputs are multiplexed for both read and write operations. Internally, the
device is organized as 2M x 8 (4 arrays each of 512K x 8) for CY7C1317CV18 and 2Mx 9 (4 arrays each
of 512K x 9) for CY7C1917CV18, 1M x 18 (4 arrays each of 256K x 18) for CY7C1319CV18, and 512K
x 36 (4 arrays each of 128K x 36) for CY7C1321CV18.
CY7C1317CV18 – Because the least two significant bits of the address internally are “00”, only 19 external
address inputs are needed to access the entire memory array.
CY7C1917CV18 – Because the least two significant bits of the address internally are “00”, only 19 external
address inputs are needed to access the entire memory array.
CY7C1319CV18 – A0 and A1 are the inputs to the burst counter. These are incremented internally in a
linear fashion. 20 address inputs are needed to access the entire memory array.
CY7C1321CV18 – A0 and A1 are the inputs to the burst counter. These are incremented internally in a
linear fashion. 19 address inputs are needed to access the entire memory array.
R/W Input-
Synchronous Synchronous Read/Write Input. When LD is LOW, this input designates the access type (read when
R/W is HIGH, write when R/W is LOW) for the loaded address. R/W must meet the setup and hold times
around the edge of K.
C Input Clock Positive Input Clock for Output Data. C is used in conjunction with C to clock out the read data from
the device. C and C can be used together to deskew the flight times of various devices on the board back
to the controller. See Application Example on page 10 for more information.
CInput Clock Negative Input Clock for Output Data. C is used in conjunction with C to clock out the read data from
the device. C and C can be used together to deskew the flight times of various devices on the board back
to the controller. See Application Example on page 10 for more information.
K Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device
and to drive out data through Q[x:0] when in single clock mode. All accesses are initiated on the rising
edge of K.
KInput Clock Negative Input Clock Input. K is used to capture synchronous data being presented to the device and
to drive out data through Q[x:0] when in single clock mode.
[+] Feedback