Alarm Descriptions

6.1.9Loss of Air Flow

A differential air pressure switch is used to indicate loss of air flow in Liebert Challenger 3000/Lie- bert Challenger ITR units.

Check for blockage of unit air outlet or inlet. Check blower motor fuses and overload reset. Check for broken belts. Make sure blower wheels are tight to shaft. Run diagnostics to see if the fan contactor is working properly.

6.1.10Loss of Power

If the unit has lost power, or the disconnect switch was turned Off before the unit On switch was pressed (to turn the unit Off), this local alarm will occur when power is restored to the unit. A Liebert remote monitoring unit (optional) will immediately indicate loss of power.

6.1.11Low Humidity

If the return air humidity has decreased to the Low Humidity Alarm setpoint, check to make sure that the unit is setup for humidification (check DIP switch). Check for proper setpoints. Does the room have a vapor barrier to seal it from outdoor humidity? Are doors or windows open to outside air? Run diagnostics to make sure the humidifier system is working properly.

6.1.12Low Suction Pressure

A pressure switch monitors the suction pressure at the compressor inlet to monitor whether pressure has dropped below a factory preset point while the compressor is in cooling operation. When pressure drops below a factory preset point, the switch opens. After the positive start kit time delay, and the switch stays open for five minutes, the alarm is activated. The alarm stays active for 90 minutes.

Look for conditions that would cause loss of refrigerant. Check for piping problems such as leaks or crimped lines. Check for inoperative components such as liquid line solenoid valve, low pressure switch, expansion valve, and head pressure control valve. Check for closed service valves in the liquid line or at the condenser or receiver.

6.1.13Low Temperature

If the return air temperature has decreased to the Low Temperature Alarm setpoint, check for proper setpoints. Run diagnostics to make sure all heating components are operating (contactors and reheats). Are reheats drawing the proper current? (See nameplate for amp rating.)

6.1.14Main Fan Overload

An optional tri-block overload is required for this alarm, and may or may not replace internal motor overload, depending on your model. The overload device is located next to the main fan contactor in the line voltage section. The alarm is activated when the overload is tripped.

6.1.15Short Cycle

On compressorized systems, if the compressor has exceeded 10 cooling starts in one hour or if the compressor has cycled five times in 10 minutes on the low pressure switch during non-cooling, the Short Cycle alarm will occur. This can be caused by low refrigerant level (but not low enough to acti- vate Low Suction Pressure alarm) or room cooling load is small compared to capacity of the unit.

Check for leaks, crimped lines, and defective components. If room load is low, increase sensitivity to reduce cycling (proportional control). On GLYCOOL units, dirty filters can cause the coil freeze stats to cycle the compressor.

34

Page 40
Image 40
Emerson 3000/ITR Loss of Air Flow, Loss of Power, Low Humidity, Low Suction Pressure, Low Temperature, Main Fan Overload

3000/ITR specifications

The Emerson 3000/ITR is a powerful and versatile instrument designed for industrial automation and process control applications. This modular platform integrates advanced features and technologies tailored to meet the needs of diverse industries including oil and gas, pharmaceuticals, and manufacturing.

One of the main features of the Emerson 3000/ITR is its exceptional scalability. The system can be easily expanded to accommodate growing operational demands. With its modular architecture, operators can add or remove components without significant downtime, ensuring continuous productivity. This flexibility allows businesses to adapt their systems to changing environments and requirements seamlessly.

The Emerson 3000/ITR leverages state-of-the-art communication technologies to ensure reliable data exchange between devices. With support for various protocols, including Hart, Modbus, and Profibus, the system can easily integrate with existing infrastructure. This adaptability enhances interoperability and simplifies the communication between field devices and control systems, promoting efficient data handling.

Built with robust security features, the Emerson 3000/ITR guarantees the integrity of sensitive data. The platform incorporates advanced encryption techniques and user authentication protocols to protect against potential cyber threats. This focus on security is essential in today’s digitally connected industrial environments.

Another key characteristic of the Emerson 3000/ITR is its user-friendly interface. The system is designed with operators in mind, featuring intuitive controls and comprehensive dashboards that provide real-time visibility into process performance. The graphical user interface simplifies complex operations, enabling quick decision-making and minimizing human errors.

Additionally, the Emerson 3000/ITR supports advanced analytics capabilities that enhance operational efficiency. By leveraging predictive analytics and machine learning algorithms, the system can identify patterns and anomalies, allowing for proactive maintenance and reducing the risk of unexpected downtime. This predictive maintenance approach helps organizations optimize their resources and extend the lifecycle of their equipment.

In conclusion, the Emerson 3000/ITR stands out as an exemplary solution for modern industrial automation. Its modular design, robust communication support, strong security measures, user-friendly interface, and advanced analytics capabilities make it an ideal choice for businesses looking to enhance their operational efficiency and adaptability. As industries continue to evolve, the Emerson 3000/ITR remains at the forefront, facilitating smarter and more efficient automation processes.