Component Operation and Maintenance

7.5.2Standard Scroll Compressor Replacement

Infrequently a fault in the motor insulation may result in a motor burn, but burnouts rarely occur in a properly installed system. Of those that do, most are the effects of mechanical or lubrication fail- ures, resulting in the burnout as a secondary consequence.

If problems that can cause compressor failures are detected and corrected early, a large percentage can be prevented. Periodic maintenance inspections by alert service personnel on the lookout for abnormal operation can be a major factor in reducing maintenance costs. It is easier and far less costly to take the steps necessary to ensure proper system operation than it is to allow a compressor to fail and require replacement.

When troubleshooting a compressor, check all electrical components for proper operation.

1.Check all fuses and circuit breakers.

2.Check Hi-Lo Pressure switch operation.

3.If a compressor failure has occurred, determine whether it is an electrical or mechanical failure.

Mechanical Failure

A mechanical compressor failure will be not be indicated by a burned odor. The motor will attempt to run. If you have determined that a mechanical failure has occurred, the compressor must be replaced.

If a burnout occurs, correct the problem that caused the burnout and clean the system. It is important to note that successive burnouts of the same system are usually caused by improper cleaning.

Electrical Failure

An electrical failure will be indicated by a distinct pungent odor. If a severe burnout has occurred, the oil will be black and acidic.

In the event that there is an electrical failure and a complete burnout of the refrigeration compressor motor, the proper procedures must be performed in order to clean the system to remove any acids that would cause a future failure.

For clean-out warnings and procedures, see Copeland Application Engineering Bulletin 24-1105 “Principles of Cleaning Refrigeration Systems” or Carlyle Service Guide, Literature # 020-611.

! WARNING

Risk of explosive discharge from high-pressure refrigerant. Can cause injury or death.

This unit contains fluids and gases under high pressure. Relieve pressure before working with piping. Do not loosen any refrigeration or electrical connections before relieving pressure.

! CAUTION

Risk of contact with hot substances or surfaces. Can cause injury.

Avoid touching or contacting the gas and oils with exposed skin. Severe burns will result. Use long rubber gloves in handling contaminated parts. Use extreme caution and wear protective gloves and arm protection when working on or near hot compressors, discharge lines, humidifiers and reheats.

NOTE

Release of refrigerant to the atmosphere is harmful to the environment and is unlawful. Refrigerant must be recycled or discarded in accordance with federal, state, and local regulations.

NOTICE

Damage to a replacement compressor caused by improper system cleaning constitutes abuse under the terms of the warranty, and the warranty will be void.

NOTICE

Risk of improper scroll compressor installation. Could cause poor performance and compressor damage.

48

Page 54
Image 54
Emerson 3000/ITR manual Standard Scroll Compressor Replacement, Mechanical Failure, Electrical Failure

3000/ITR specifications

The Emerson 3000/ITR is a powerful and versatile instrument designed for industrial automation and process control applications. This modular platform integrates advanced features and technologies tailored to meet the needs of diverse industries including oil and gas, pharmaceuticals, and manufacturing.

One of the main features of the Emerson 3000/ITR is its exceptional scalability. The system can be easily expanded to accommodate growing operational demands. With its modular architecture, operators can add or remove components without significant downtime, ensuring continuous productivity. This flexibility allows businesses to adapt their systems to changing environments and requirements seamlessly.

The Emerson 3000/ITR leverages state-of-the-art communication technologies to ensure reliable data exchange between devices. With support for various protocols, including Hart, Modbus, and Profibus, the system can easily integrate with existing infrastructure. This adaptability enhances interoperability and simplifies the communication between field devices and control systems, promoting efficient data handling.

Built with robust security features, the Emerson 3000/ITR guarantees the integrity of sensitive data. The platform incorporates advanced encryption techniques and user authentication protocols to protect against potential cyber threats. This focus on security is essential in today’s digitally connected industrial environments.

Another key characteristic of the Emerson 3000/ITR is its user-friendly interface. The system is designed with operators in mind, featuring intuitive controls and comprehensive dashboards that provide real-time visibility into process performance. The graphical user interface simplifies complex operations, enabling quick decision-making and minimizing human errors.

Additionally, the Emerson 3000/ITR supports advanced analytics capabilities that enhance operational efficiency. By leveraging predictive analytics and machine learning algorithms, the system can identify patterns and anomalies, allowing for proactive maintenance and reducing the risk of unexpected downtime. This predictive maintenance approach helps organizations optimize their resources and extend the lifecycle of their equipment.

In conclusion, the Emerson 3000/ITR stands out as an exemplary solution for modern industrial automation. Its modular design, robust communication support, strong security measures, user-friendly interface, and advanced analytics capabilities make it an ideal choice for businesses looking to enhance their operational efficiency and adaptability. As industries continue to evolve, the Emerson 3000/ITR remains at the forefront, facilitating smarter and more efficient automation processes.