Response by Control Type—Advanced Microprocessor Controls

5.4.2Water Detection Display

The water detection display is designed to graphically display the location of water under a raised floor when connected to an LT750 water detection system. The graphical floor plan screen shows a 30 x 16 grid. Each square represents one standard floor tile (approximately 2 ft. x 2ft.).

Figure 6 Connecting the LT750

 

 

 

41

TB6

2

-

42

1

 

43

 

+

 

 

44

 

 

 

 

3

NO

45

 

NC

46

TB5

2

C

47

fault

1

 

48

 

 

 

 

3

NO

24

 

NC

TB4

2

50

C

water

1

51

 

 

 

 

55

LT750

 

 

56

 

 

 

Environmental Unit

Physical Connections

The example above shows the 4-20 mA output of LT750 connected to Analog Input #1 (41 and 42) on the external inputs terminal strip. This strip is provided on units ordered with analog inputs. (If this strip is not installed, there is a field installation kit available from your Liebert representative.)

The 4-20 mA output of the LT750 must be connected to the first analog input, as shown. TB4 is the water detected relay output. It can be connected to any one of the four special alarm inputs. TB5 is the cable fault relay output. It can also be connected to any one of the four special alarm inputs.

Setup

The following description assumes wiring connections as shown in Figure 6.

First, verify that special alarms 1 and 2 are Enabled to either Warning or Urgent type. Do this by selecting View/Set Alarms from the Main Menu. Then, select Setup Alarms. Follow the instructions on the display to select the required type for Custom Alarm #1 and Custom Alarm #2 if not already set.

Next, select the alarm message for Custom Alarm #1 and #2. From the Main Menu, select View/Set Alarms. Then, select Setup Custom Alarms. Then, select Setup Custom Alarm Text. Define Custom Alarm #1 to be Custom 1. (Custom 1 is the default message that will be displayed if a message has never been programmed.) Next, select the text for custom alarm #2 to be Water Under Floor. Now, change the message Custom 1 to LT750 Cable Fault. This is done by selecting the Change Custom Text 1 menu item in the Setup Custom Alarms menu. Follow the instructions on the screen to change the message.

The slope and intercept values of Analog Input #1 are used to calculate the location of water. These values should initially be set to zero. The default values are zero, but it may be a good idea to verify those values. They can be viewed by selecting Analog/Digital Inputs from the Main Menu, then Setup Analog Inputs.

See 4.4.6 - Setup Water Detect Floor Plan for more information.

41

Page 49
Image 49
Emerson DE, VH, VE, DH manual Water Detection Display, Physical Connections, Setup

VE, DH, VH, DE specifications

Emerson is a well-known brand in the field of automation solutions, offering a range of products that cater to various industries. Among its diverse portfolio, Emerson’s products like DE (Digital Electronics), VH (Variable Frequency Drives), DH (Distributed Control Systems), and VE (Valve Positioners) stand out for their advanced features, cutting-edge technologies, and unique characteristics.

Digital Electronics (DE) from Emerson represents the backbone of modern automation systems. These devices are characterized by their highly reliable digital communication capabilities, providing robust solutions for process monitoring and control. DE products integrate seamlessly with various automation platforms, allowing for easy data exchange and system interoperability. The advanced analytics embedded in these systems enable predictive maintenance strategies, enhancing overall operational efficiency.

Variable Frequency Drives (VH) are integral to motor control technologies, maximizing energy efficiency in various applications. Emerson's VH drives are designed for flexibility, supporting multiple motor types and configurations. These drives utilize pulse width modulation (PWM) technology, allowing for precise speed control and improved application performance. Their built-in protection features help extend motor life, prevent downtime, and reduce maintenance costs. Furthermore, the user-friendly interfaces of VH drives facilitate quick setup and troubleshooting.

Distributed Control Systems (DH) from Emerson provide a holistic approach to managing complex industrial processes. They enable centralized control while ensuring that local operations continue seamlessly. DH systems are characterized by their modular architecture, making them highly scalable and adaptable to changing operational needs. Advanced control algorithms within these systems help optimize processes, ensuring maximum productivity. Additionally, their enhanced cybersecurity features protect critical industrial operations from potential threats.

Emerson's Valve Positioners (VE) play a crucial role in regulating flow and pressure in various processes. These devices provide precise positioning capabilities, enhancing the performance of control valves. The VE systems incorporate smart technologies such as adaptive control and diagnostics, allowing them to self-tune and deliver accurate performance over time. Their compact design and robust build ensure they operate effectively in challenging environments.

In summary, Emerson's DE, VH, DH, and VE offerings embody the latest innovations in automation technology. Their main features, including digital communication, energy efficiency, scalability, and precision control, cater to the diverse demands of modern industries. With these products, Emerson not only enhances operational efficiency but also paves the way for intelligent automation solutions that are crucial for the future of industrial processes.