Advanced Microprocessor with Graphics Control Setup

4.4.3Setup Alarms

The list of alarms may be reviewed using the UP/DOWN keys. Any alarm may be selected to have its parameters modified by pressing the ENTER key. All alarms have a time delay and alarm type parameter. The high/low temperature and humidity alarms also have a programmable Trip Point. The Trip Point is the point at which the alarm is activated. By programming a time delay for an alarm, the system will delay the specified amount of time before recognizing the alarm. The alarm condition must be present for the amount of time programmed for that alarm before it will be annun- ciated. If the alarm condition goes away before the time delay has timed out, the alarm will not be rec- ognized. For software alarms such as Loss of Power, Short Cycle, and Low Suction Pressure, a time delay will only delay the annunciation of that alarm. The condition of the alarm is not applicable because the condition has already occurred. For these alarms the time delay should be left at the fac- tory default of 0.

Table 7 Alarm default time delay

 

Default Time Delay

Alarm

(seconds)

 

 

Humidifier Problem

2

 

 

High Head Pressure 1

2

 

 

High Head Pressure 2

2

 

 

Change Filter

2

 

 

Loss of Air Flow

3

 

 

Custom Alarm #1

0

 

 

Custom Alarm #2

0

 

 

Custom Alarm #3

0

 

 

Custom Alarm #4

6

 

 

High Temperature

30

 

 

Low Temperature

30

 

 

High Humidity

30

 

 

Low Humidity

30

 

 

Low Suction Pressure 1, 2

0

 

 

Short Cycle 1, 2

0

 

 

Compressor #1 Overload

2

 

 

Compressor #2 Overload

2

 

 

Main Fan Overload

5

 

 

Loss of Power

0

 

 

Each individual alarm can be selected as either DISABLED, WARNING, or URGENT. The four cus- tom alarms may also be selected to be a Status Only input. If the alarm is DISABLED, it is ignored. If the alarm is WARNING or URGENT, it will be annunciated audibly, visually, and communicated to a Site Products System, if appropriate. If the alarm is selected to be a WARNING, the alarm will NOT activate the common alarm relay. When the alarm is selected to be URGENT, the alarm is first annunciated as a WARNING, and then annunciated again, after the programmed time delay. When the alarm becomes URGENT, the control will activate the common alarm relay. The common alarm relay is de-energized after the alarm has been recognized and when the alarm no longer exists. When the alarm type has been selected to be URGENT, the allowable range for the time delay from warning to urgent is 0 minutes to 999 hours. When any of the four custom alarm inputs have been selected as Status Only, they become digital inputs for monitoring only and are no longer treated as alarms.

21

Page 29
Image 29
Emerson DE, VH, VE, DH manual Default Time Delay, Alarm Seconds

VE, DH, VH, DE specifications

Emerson is a well-known brand in the field of automation solutions, offering a range of products that cater to various industries. Among its diverse portfolio, Emerson’s products like DE (Digital Electronics), VH (Variable Frequency Drives), DH (Distributed Control Systems), and VE (Valve Positioners) stand out for their advanced features, cutting-edge technologies, and unique characteristics.

Digital Electronics (DE) from Emerson represents the backbone of modern automation systems. These devices are characterized by their highly reliable digital communication capabilities, providing robust solutions for process monitoring and control. DE products integrate seamlessly with various automation platforms, allowing for easy data exchange and system interoperability. The advanced analytics embedded in these systems enable predictive maintenance strategies, enhancing overall operational efficiency.

Variable Frequency Drives (VH) are integral to motor control technologies, maximizing energy efficiency in various applications. Emerson's VH drives are designed for flexibility, supporting multiple motor types and configurations. These drives utilize pulse width modulation (PWM) technology, allowing for precise speed control and improved application performance. Their built-in protection features help extend motor life, prevent downtime, and reduce maintenance costs. Furthermore, the user-friendly interfaces of VH drives facilitate quick setup and troubleshooting.

Distributed Control Systems (DH) from Emerson provide a holistic approach to managing complex industrial processes. They enable centralized control while ensuring that local operations continue seamlessly. DH systems are characterized by their modular architecture, making them highly scalable and adaptable to changing operational needs. Advanced control algorithms within these systems help optimize processes, ensuring maximum productivity. Additionally, their enhanced cybersecurity features protect critical industrial operations from potential threats.

Emerson's Valve Positioners (VE) play a crucial role in regulating flow and pressure in various processes. These devices provide precise positioning capabilities, enhancing the performance of control valves. The VE systems incorporate smart technologies such as adaptive control and diagnostics, allowing them to self-tune and deliver accurate performance over time. Their compact design and robust build ensure they operate effectively in challenging environments.

In summary, Emerson's DE, VH, DH, and VE offerings embody the latest innovations in automation technology. Their main features, including digital communication, energy efficiency, scalability, and precision control, cater to the diverse demands of modern industries. With these products, Emerson not only enhances operational efficiency but also paves the way for intelligent automation solutions that are crucial for the future of industrial processes.